成人性生交大片免费看视频r_亚洲综合极品香蕉久久网_在线视频免费观看一区_亚洲精品亚洲人成人网在线播放_国产精品毛片av_久久久久国产精品www_亚洲国产一区二区三区在线播_日韩一区二区三区四区区区_亚洲精品国产无套在线观_国产免费www

主頁 > 知識庫 > PyTorch一小時掌握之遷移學(xué)習(xí)篇

PyTorch一小時掌握之遷移學(xué)習(xí)篇

熱門標(biāo)簽:湛江電銷防封卡 獲客智能電銷機(jī)器人 電話機(jī)器人適用業(yè)務(wù) 佛山防封外呼系統(tǒng)收費(fèi) 不錯的400電話辦理 徐州天音防封電銷卡 鄭州智能外呼系統(tǒng)運(yùn)營商 哈爾濱外呼系統(tǒng)代理商 南昌辦理400電話怎么安裝

概述

遷移學(xué)習(xí) (Transfer Learning) 是把已學(xué)訓(xùn)練好的模型參數(shù)用作新訓(xùn)練模型的起始參數(shù). 遷移學(xué)習(xí)是深度學(xué)習(xí)中非常重要和常用的一個策略.

為什么使用遷移學(xué)習(xí)

更好的結(jié)果

遷移學(xué)習(xí) (Transfer Learning) 可以幫助我們得到更好的結(jié)果.

當(dāng)我們手上的數(shù)據(jù)比較少的時候, 訓(xùn)練非常容易造成過擬合的現(xiàn)象. 使用遷移學(xué)習(xí)可以幫助我們通過更少的訓(xùn)練數(shù)據(jù)達(dá)到更好的效果. 使得模型的泛化能力更強(qiáng), 訓(xùn)練過程更穩(wěn)定.

節(jié)省時間

遷移學(xué)習(xí) (Transfer Learning) 可以幫助我們節(jié)省時間.

通過遷徙學(xué)習(xí), 我們站在了巨人的肩膀上. 利用前人花大量時間訓(xùn)練好的參數(shù), 能幫助我們在模型的訓(xùn)練上節(jié)省大把的時間.

加載模型

首先我們需要加載模型, 并指定層數(shù). 常用的模型有:

  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
  • Inception
  • GoogLeNet
  • ShuffleNet
  • MobileNet

官網(wǎng) API

ResNet152

我們將使用 ResNet 152 和 CIFAR 100 來舉例.

凍層實(shí)現(xiàn)

def set_parameter_requires_grad(model, feature_extracting):
    """
    是否保留梯度, 實(shí)現(xiàn)凍層
    :param model: 模型
    :param feature_extracting: 是否凍層
    :return: 無返回值
    """
    if feature_extracting:  # 如果凍層
        for param in model.parameters():  # 遍歷每個權(quán)重參數(shù)
            param.requires_grad = False  # 保留梯度為False

模型初始化

def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
    """
    初始化模型
    :param model_name: 模型名字
    :param num_classes: 類別數(shù)
    :param feature_exact: 是否凍層
    :param use_pretrained: 是否下載模型
    :return: 返回模型,
    """

    model_ft = None

    if model_name == "resnet":
        """Resnet152"""

        # 加載模型
        model_ft = models.resnet152(pretrained=use_pretrained)  # 下載參數(shù)
        set_parameter_requires_grad(model_ft, feature_exact)  # 凍層

        # 修改全連接層
        num_features = model_ft.fc.in_features
        model_ft.fc = torch.nn.Sequential(
            torch.nn.Linear(num_features, num_classes),
            torch.nn.LogSoftmax(dim=1)
        )

    # 返回初始化好的模型
    return model_ft

獲取需更新參數(shù)

def parameter_to_update(model):
    """
    獲取需要更新的參數(shù)
    :param model: 模型
    :return: 需要更新的參數(shù)列表
    """

    print("Params to learn")
    param_array = model.parameters()

    if feature_exact:
        param_array = []
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                param_array.append(param)
                print("\t", name)
    else:
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                print("\t", name)

    return param_array

訓(xùn)練模型

def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
    # 獲取起始時間
    since = time.time()

    # 初始化參數(shù)
    best_acc = 0
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]["lr"]]
    best_model_weights = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs - 1))
        print("-" * 10)

        # 訓(xùn)練和驗(yàn)證
        for phase in ["train", "valid"]:
            if phase == "train":
                model.train()  # 訓(xùn)練
            else:
                model.eval()  # 驗(yàn)證

            running_loss = 0.0
            running_corrects = 0

            # 遍歷數(shù)據(jù)
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 梯度清零
                optimizer.zero_grad()

                # 只有訓(xùn)練的時候計算和更新梯度
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)

                    # 計算損失
                    loss = criterion(outputs, labels)

                    # 訓(xùn)練階段更新權(quán)重
                    if phase == "train":
                        loss.backward()
                        optimizer.step()

                # 計算損失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_eplased = time.time() - since
            print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
            print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))

            # 得到最好的模型
            if phase == "valid" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_weights = copy.deepcopy(model.state_dict())
                state = {
                    "state_dict": model.state_dict(),
                    "best_acc": best_acc,
                    "optimizer": optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == "valid":
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == "train":
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
        LRs.append(optimizer.param_groups[0]["lr"])
        print()

    time_eplased = time.time() - since
    print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
    print("Best val Acc: {:4f}".format(best_acc))

    # 訓(xùn)練完后用最好的一次當(dāng)做模型最終的結(jié)果
    model.load_state_dict(best_model_weights)

    # 返回
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs

獲取數(shù)據(jù)

def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測試集
    train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                          transform=torchvision.transforms.Compose([
                                              torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                              torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                          ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測試集

    # 獲取測試集
    test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                         transform=torchvision.transforms.Compose([
                                             torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                             torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                         ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓(xùn)練

    data_loader = {"train": train_loader, "valid": test_loader}

    # 返回分割好的訓(xùn)練集和測試集
    return data_loader

完整代碼

完整代碼:

import copy
import torch
from torch.utils.data import DataLoader
import time
from torchsummary import summary
import torchvision
import torchvision.models as models


def set_parameter_requires_grad(model, feature_extracting):
    """
    是否保留梯度, 實(shí)現(xiàn)凍層
    :param model: 模型
    :param feature_extracting: 是否凍層
    :return: 無返回值
    """
    if feature_extracting:  # 如果凍層
        for param in model.parameters():  # 遍歷每個權(quán)重參數(shù)
            param.requires_grad = False  # 保留梯度為False


def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
    """
    初始化模型
    :param model_name: 模型名字
    :param num_classes: 類別數(shù)
    :param feature_exact: 是否凍層
    :param use_pretrained: 是否下載模型
    :return: 返回模型,
    """

    model_ft = None

    if model_name == "resnet":
        """Resnet152"""

        # 加載模型
        model_ft = models.resnet152(pretrained=use_pretrained)  # 下載參數(shù)
        set_parameter_requires_grad(model_ft, feature_exact)  # 凍層

        # 修改全連接層
        num_features = model_ft.fc.in_features
        model_ft.fc = torch.nn.Sequential(
            torch.nn.Linear(num_features, num_classes),
            torch.nn.LogSoftmax(dim=1)
        )

    # 返回初始化好的模型
    return model_ft


def parameter_to_update(model):
    """
    獲取需要更新的參數(shù)
    :param model: 模型
    :return: 需要更新的參數(shù)列表
    """

    print("Params to learn")
    param_array = model.parameters()

    if feature_exact:
        param_array = []
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                param_array.append(param)
                print("\t", name)
    else:
        for name, param, in model.named_parameters():
            if param.requires_grad == True:
                print("\t", name)

    return param_array


def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
    # 獲取起始時間
    since = time.time()

    # 初始化參數(shù)
    best_acc = 0
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]["lr"]]
    best_model_weights = copy.deepcopy(model.state_dict())

    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs - 1))
        print("-" * 10)

        # 訓(xùn)練和驗(yàn)證
        for phase in ["train", "valid"]:
            if phase == "train":
                model.train()  # 訓(xùn)練
            else:
                model.eval()  # 驗(yàn)證

            running_loss = 0.0
            running_corrects = 0

            # 遍歷數(shù)據(jù)
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 梯度清零
                optimizer.zero_grad()

                # 只有訓(xùn)練的時候計算和更新梯度
                with torch.set_grad_enabled(phase == "train"):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)

                    # 計算損失
                    loss = criterion(outputs, labels)

                    # 訓(xùn)練階段更新權(quán)重
                    if phase == "train":
                        loss.backward()
                        optimizer.step()

                # 計算損失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

            time_eplased = time.time() - since
            print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
            print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))

            # 得到最好的模型
            if phase == "valid" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_weights = copy.deepcopy(model.state_dict())
                state = {
                    "state_dict": model.state_dict(),
                    "best_acc": best_acc,
                    "optimizer": optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == "valid":
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == "train":
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)

        print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
        LRs.append(optimizer.param_groups[0]["lr"])
        print()

    time_eplased = time.time() - since
    print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
    print("Best val Acc: {:4f}".format(best_acc))

    # 訓(xùn)練完后用最好的一次當(dāng)做模型最終的結(jié)果
    model.load_state_dict(best_model_weights)

    # 返回
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs


def get_data():
    """獲取數(shù)據(jù)"""

    # 獲取測試集
    train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                          transform=torchvision.transforms.Compose([
                                              torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                              torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                          ]))
    train_loader = DataLoader(train, batch_size=batch_size)  # 分割測試集

    # 獲取測試集
    test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                         transform=torchvision.transforms.Compose([
                                             torchvision.transforms.ToTensor(),  # 轉(zhuǎn)換成張量
                                             torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 標(biāo)準(zhǔn)化
                                         ]))
    test_loader = DataLoader(test, batch_size=batch_size)  # 分割訓(xùn)練

    data_loader = {"train": train_loader, "valid": test_loader}

    # 返回分割好的訓(xùn)練集和測試集
    return data_loader


# 超參數(shù)
filename = "checkpoint.pth"  # 模型保存
feature_exact = True  # 凍層
num_classes = 100  # 輸出的類別數(shù)
batch_size = 1024  # 一次訓(xùn)練的樣本數(shù)目
iteration_num = 10  # 迭代次數(shù)

# 獲取模型
resnet152 = initialize_model(
    model_name="resnet",
    num_classes=num_classes,
    feature_exact=feature_exact,
    use_pretrained=True
)

# 是否使用GPU訓(xùn)練
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda: resnet152.cuda()  # GPU 計算
print("是否使用 GPU 加速:", use_cuda)

# 輸出網(wǎng)絡(luò)結(jié)構(gòu)
print(summary(resnet152, (3, 32, 32)))

# 訓(xùn)練參數(shù)
params_to_update = parameter_to_update(resnet152)

# 優(yōu)化器
optimizer = torch.optim.Adam(params_to_update, lr=0.01)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)  # 學(xué)習(xí)率每10個epoch衰減到原來的1/10
criterion = torch.nn.NLLLoss()

if __name__ == "__main__":
    data_loader = get_data()
    resnet152, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(
        model=resnet152,
        dataloaders=data_loader,
        citerion=criterion,
        optimizer=optimizer,
        num_epochs=iteration_num,
        filename=filename
    )

輸出結(jié)果:

是否使用 GPU 加速: True
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 64, 16, 16] 9,408
BatchNorm2d-2 [-1, 64, 16, 16] 128
ReLU-3 [-1, 64, 16, 16] 0
MaxPool2d-4 [-1, 64, 8, 8] 0
Conv2d-5 [-1, 64, 8, 8] 4,096
BatchNorm2d-6 [-1, 64, 8, 8] 128
ReLU-7 [-1, 64, 8, 8] 0
Conv2d-8 [-1, 64, 8, 8] 36,864
BatchNorm2d-9 [-1, 64, 8, 8] 128
ReLU-10 [-1, 64, 8, 8] 0
Conv2d-11 [-1, 256, 8, 8] 16,384
BatchNorm2d-12 [-1, 256, 8, 8] 512
Conv2d-13 [-1, 256, 8, 8] 16,384
BatchNorm2d-14 [-1, 256, 8, 8] 512
ReLU-15 [-1, 256, 8, 8] 0
Bottleneck-16 [-1, 256, 8, 8] 0
Conv2d-17 [-1, 64, 8, 8] 16,384
BatchNorm2d-18 [-1, 64, 8, 8] 128
ReLU-19 [-1, 64, 8, 8] 0
Conv2d-20 [-1, 64, 8, 8] 36,864
BatchNorm2d-21 [-1, 64, 8, 8] 128
ReLU-22 [-1, 64, 8, 8] 0
Conv2d-23 [-1, 256, 8, 8] 16,384
BatchNorm2d-24 [-1, 256, 8, 8] 512
ReLU-25 [-1, 256, 8, 8] 0
Bottleneck-26 [-1, 256, 8, 8] 0
Conv2d-27 [-1, 64, 8, 8] 16,384
BatchNorm2d-28 [-1, 64, 8, 8] 128
ReLU-29 [-1, 64, 8, 8] 0
Conv2d-30 [-1, 64, 8, 8] 36,864
BatchNorm2d-31 [-1, 64, 8, 8] 128
ReLU-32 [-1, 64, 8, 8] 0
Conv2d-33 [-1, 256, 8, 8] 16,384
BatchNorm2d-34 [-1, 256, 8, 8] 512
ReLU-35 [-1, 256, 8, 8] 0
Bottleneck-36 [-1, 256, 8, 8] 0
Conv2d-37 [-1, 128, 8, 8] 32,768
BatchNorm2d-38 [-1, 128, 8, 8] 256
ReLU-39 [-1, 128, 8, 8] 0
Conv2d-40 [-1, 128, 4, 4] 147,456
BatchNorm2d-41 [-1, 128, 4, 4] 256
ReLU-42 [-1, 128, 4, 4] 0
Conv2d-43 [-1, 512, 4, 4] 65,536
BatchNorm2d-44 [-1, 512, 4, 4] 1,024
Conv2d-45 [-1, 512, 4, 4] 131,072
BatchNorm2d-46 [-1, 512, 4, 4] 1,024
ReLU-47 [-1, 512, 4, 4] 0
Bottleneck-48 [-1, 512, 4, 4] 0
Conv2d-49 [-1, 128, 4, 4] 65,536
BatchNorm2d-50 [-1, 128, 4, 4] 256
ReLU-51 [-1, 128, 4, 4] 0
Conv2d-52 [-1, 128, 4, 4] 147,456
BatchNorm2d-53 [-1, 128, 4, 4] 256
ReLU-54 [-1, 128, 4, 4] 0
Conv2d-55 [-1, 512, 4, 4] 65,536
BatchNorm2d-56 [-1, 512, 4, 4] 1,024
ReLU-57 [-1, 512, 4, 4] 0
Bottleneck-58 [-1, 512, 4, 4] 0
Conv2d-59 [-1, 128, 4, 4] 65,536
BatchNorm2d-60 [-1, 128, 4, 4] 256
ReLU-61 [-1, 128, 4, 4] 0
Conv2d-62 [-1, 128, 4, 4] 147,456
BatchNorm2d-63 [-1, 128, 4, 4] 256
ReLU-64 [-1, 128, 4, 4] 0
Conv2d-65 [-1, 512, 4, 4] 65,536
BatchNorm2d-66 [-1, 512, 4, 4] 1,024
ReLU-67 [-1, 512, 4, 4] 0
Bottleneck-68 [-1, 512, 4, 4] 0
Conv2d-69 [-1, 128, 4, 4] 65,536
BatchNorm2d-70 [-1, 128, 4, 4] 256
ReLU-71 [-1, 128, 4, 4] 0
Conv2d-72 [-1, 128, 4, 4] 147,456
BatchNorm2d-73 [-1, 128, 4, 4] 256
ReLU-74 [-1, 128, 4, 4] 0
Conv2d-75 [-1, 512, 4, 4] 65,536
BatchNorm2d-76 [-1, 512, 4, 4] 1,024
ReLU-77 [-1, 512, 4, 4] 0
Bottleneck-78 [-1, 512, 4, 4] 0
Conv2d-79 [-1, 128, 4, 4] 65,536
BatchNorm2d-80 [-1, 128, 4, 4] 256
ReLU-81 [-1, 128, 4, 4] 0
Conv2d-82 [-1, 128, 4, 4] 147,456
BatchNorm2d-83 [-1, 128, 4, 4] 256
ReLU-84 [-1, 128, 4, 4] 0
Conv2d-85 [-1, 512, 4, 4] 65,536
BatchNorm2d-86 [-1, 512, 4, 4] 1,024
ReLU-87 [-1, 512, 4, 4] 0
Bottleneck-88 [-1, 512, 4, 4] 0
Conv2d-89 [-1, 128, 4, 4] 65,536
BatchNorm2d-90 [-1, 128, 4, 4] 256
ReLU-91 [-1, 128, 4, 4] 0
Conv2d-92 [-1, 128, 4, 4] 147,456
BatchNorm2d-93 [-1, 128, 4, 4] 256
ReLU-94 [-1, 128, 4, 4] 0
Conv2d-95 [-1, 512, 4, 4] 65,536
BatchNorm2d-96 [-1, 512, 4, 4] 1,024
ReLU-97 [-1, 512, 4, 4] 0
Bottleneck-98 [-1, 512, 4, 4] 0
Conv2d-99 [-1, 128, 4, 4] 65,536
BatchNorm2d-100 [-1, 128, 4, 4] 256
ReLU-101 [-1, 128, 4, 4] 0
Conv2d-102 [-1, 128, 4, 4] 147,456
BatchNorm2d-103 [-1, 128, 4, 4] 256
ReLU-104 [-1, 128, 4, 4] 0
Conv2d-105 [-1, 512, 4, 4] 65,536
BatchNorm2d-106 [-1, 512, 4, 4] 1,024
ReLU-107 [-1, 512, 4, 4] 0
Bottleneck-108 [-1, 512, 4, 4] 0
Conv2d-109 [-1, 128, 4, 4] 65,536
BatchNorm2d-110 [-1, 128, 4, 4] 256
ReLU-111 [-1, 128, 4, 4] 0
Conv2d-112 [-1, 128, 4, 4] 147,456
BatchNorm2d-113 [-1, 128, 4, 4] 256
ReLU-114 [-1, 128, 4, 4] 0
Conv2d-115 [-1, 512, 4, 4] 65,536
BatchNorm2d-116 [-1, 512, 4, 4] 1,024
ReLU-117 [-1, 512, 4, 4] 0
Bottleneck-118 [-1, 512, 4, 4] 0
Conv2d-119 [-1, 256, 4, 4] 131,072
BatchNorm2d-120 [-1, 256, 4, 4] 512
ReLU-121 [-1, 256, 4, 4] 0
Conv2d-122 [-1, 256, 2, 2] 589,824
BatchNorm2d-123 [-1, 256, 2, 2] 512
ReLU-124 [-1, 256, 2, 2] 0
Conv2d-125 [-1, 1024, 2, 2] 262,144
BatchNorm2d-126 [-1, 1024, 2, 2] 2,048
Conv2d-127 [-1, 1024, 2, 2] 524,288
BatchNorm2d-128 [-1, 1024, 2, 2] 2,048
ReLU-129 [-1, 1024, 2, 2] 0
Bottleneck-130 [-1, 1024, 2, 2] 0
Conv2d-131 [-1, 256, 2, 2] 262,144
BatchNorm2d-132 [-1, 256, 2, 2] 512
ReLU-133 [-1, 256, 2, 2] 0
Conv2d-134 [-1, 256, 2, 2] 589,824
BatchNorm2d-135 [-1, 256, 2, 2] 512
ReLU-136 [-1, 256, 2, 2] 0
Conv2d-137 [-1, 1024, 2, 2] 262,144
BatchNorm2d-138 [-1, 1024, 2, 2] 2,048
ReLU-139 [-1, 1024, 2, 2] 0
Bottleneck-140 [-1, 1024, 2, 2] 0
Conv2d-141 [-1, 256, 2, 2] 262,144
BatchNorm2d-142 [-1, 256, 2, 2] 512
ReLU-143 [-1, 256, 2, 2] 0
Conv2d-144 [-1, 256, 2, 2] 589,824
BatchNorm2d-145 [-1, 256, 2, 2] 512
ReLU-146 [-1, 256, 2, 2] 0
Conv2d-147 [-1, 1024, 2, 2] 262,144
BatchNorm2d-148 [-1, 1024, 2, 2] 2,048
ReLU-149 [-1, 1024, 2, 2] 0
Bottleneck-150 [-1, 1024, 2, 2] 0
Conv2d-151 [-1, 256, 2, 2] 262,144
BatchNorm2d-152 [-1, 256, 2, 2] 512
ReLU-153 [-1, 256, 2, 2] 0
Conv2d-154 [-1, 256, 2, 2] 589,824
BatchNorm2d-155 [-1, 256, 2, 2] 512
ReLU-156 [-1, 256, 2, 2] 0
Conv2d-157 [-1, 1024, 2, 2] 262,144
BatchNorm2d-158 [-1, 1024, 2, 2] 2,048
ReLU-159 [-1, 1024, 2, 2] 0
Bottleneck-160 [-1, 1024, 2, 2] 0
Conv2d-161 [-1, 256, 2, 2] 262,144
BatchNorm2d-162 [-1, 256, 2, 2] 512
ReLU-163 [-1, 256, 2, 2] 0
Conv2d-164 [-1, 256, 2, 2] 589,824
BatchNorm2d-165 [-1, 256, 2, 2] 512
ReLU-166 [-1, 256, 2, 2] 0
Conv2d-167 [-1, 1024, 2, 2] 262,144
BatchNorm2d-168 [-1, 1024, 2, 2] 2,048
ReLU-169 [-1, 1024, 2, 2] 0
Bottleneck-170 [-1, 1024, 2, 2] 0
Conv2d-171 [-1, 256, 2, 2] 262,144
BatchNorm2d-172 [-1, 256, 2, 2] 512
ReLU-173 [-1, 256, 2, 2] 0
Conv2d-174 [-1, 256, 2, 2] 589,824
BatchNorm2d-175 [-1, 256, 2, 2] 512
ReLU-176 [-1, 256, 2, 2] 0
Conv2d-177 [-1, 1024, 2, 2] 262,144
BatchNorm2d-178 [-1, 1024, 2, 2] 2,048
ReLU-179 [-1, 1024, 2, 2] 0
Bottleneck-180 [-1, 1024, 2, 2] 0
Conv2d-181 [-1, 256, 2, 2] 262,144
BatchNorm2d-182 [-1, 256, 2, 2] 512
ReLU-183 [-1, 256, 2, 2] 0
Conv2d-184 [-1, 256, 2, 2] 589,824
BatchNorm2d-185 [-1, 256, 2, 2] 512
ReLU-186 [-1, 256, 2, 2] 0
Conv2d-187 [-1, 1024, 2, 2] 262,144
BatchNorm2d-188 [-1, 1024, 2, 2] 2,048
ReLU-189 [-1, 1024, 2, 2] 0
Bottleneck-190 [-1, 1024, 2, 2] 0
Conv2d-191 [-1, 256, 2, 2] 262,144
BatchNorm2d-192 [-1, 256, 2, 2] 512
ReLU-193 [-1, 256, 2, 2] 0
Conv2d-194 [-1, 256, 2, 2] 589,824
BatchNorm2d-195 [-1, 256, 2, 2] 512
ReLU-196 [-1, 256, 2, 2] 0
Conv2d-197 [-1, 1024, 2, 2] 262,144
BatchNorm2d-198 [-1, 1024, 2, 2] 2,048
ReLU-199 [-1, 1024, 2, 2] 0
Bottleneck-200 [-1, 1024, 2, 2] 0
Conv2d-201 [-1, 256, 2, 2] 262,144
BatchNorm2d-202 [-1, 256, 2, 2] 512
ReLU-203 [-1, 256, 2, 2] 0
Conv2d-204 [-1, 256, 2, 2] 589,824
BatchNorm2d-205 [-1, 256, 2, 2] 512
ReLU-206 [-1, 256, 2, 2] 0
Conv2d-207 [-1, 1024, 2, 2] 262,144
BatchNorm2d-208 [-1, 1024, 2, 2] 2,048
ReLU-209 [-1, 1024, 2, 2] 0
Bottleneck-210 [-1, 1024, 2, 2] 0
Conv2d-211 [-1, 256, 2, 2] 262,144
BatchNorm2d-212 [-1, 256, 2, 2] 512
ReLU-213 [-1, 256, 2, 2] 0
Conv2d-214 [-1, 256, 2, 2] 589,824
BatchNorm2d-215 [-1, 256, 2, 2] 512
ReLU-216 [-1, 256, 2, 2] 0
Conv2d-217 [-1, 1024, 2, 2] 262,144
BatchNorm2d-218 [-1, 1024, 2, 2] 2,048
ReLU-219 [-1, 1024, 2, 2] 0
Bottleneck-220 [-1, 1024, 2, 2] 0
Conv2d-221 [-1, 256, 2, 2] 262,144
BatchNorm2d-222 [-1, 256, 2, 2] 512
ReLU-223 [-1, 256, 2, 2] 0
Conv2d-224 [-1, 256, 2, 2] 589,824
BatchNorm2d-225 [-1, 256, 2, 2] 512
ReLU-226 [-1, 256, 2, 2] 0
Conv2d-227 [-1, 1024, 2, 2] 262,144
BatchNorm2d-228 [-1, 1024, 2, 2] 2,048
ReLU-229 [-1, 1024, 2, 2] 0
Bottleneck-230 [-1, 1024, 2, 2] 0
Conv2d-231 [-1, 256, 2, 2] 262,144
BatchNorm2d-232 [-1, 256, 2, 2] 512
ReLU-233 [-1, 256, 2, 2] 0
Conv2d-234 [-1, 256, 2, 2] 589,824
BatchNorm2d-235 [-1, 256, 2, 2] 512
ReLU-236 [-1, 256, 2, 2] 0
Conv2d-237 [-1, 1024, 2, 2] 262,144
BatchNorm2d-238 [-1, 1024, 2, 2] 2,048
ReLU-239 [-1, 1024, 2, 2] 0
Bottleneck-240 [-1, 1024, 2, 2] 0
Conv2d-241 [-1, 256, 2, 2] 262,144
BatchNorm2d-242 [-1, 256, 2, 2] 512
ReLU-243 [-1, 256, 2, 2] 0
Conv2d-244 [-1, 256, 2, 2] 589,824
BatchNorm2d-245 [-1, 256, 2, 2] 512
ReLU-246 [-1, 256, 2, 2] 0
Conv2d-247 [-1, 1024, 2, 2] 262,144
BatchNorm2d-248 [-1, 1024, 2, 2] 2,048
ReLU-249 [-1, 1024, 2, 2] 0
Bottleneck-250 [-1, 1024, 2, 2] 0
Conv2d-251 [-1, 256, 2, 2] 262,144
BatchNorm2d-252 [-1, 256, 2, 2] 512
ReLU-253 [-1, 256, 2, 2] 0
Conv2d-254 [-1, 256, 2, 2] 589,824
BatchNorm2d-255 [-1, 256, 2, 2] 512
ReLU-256 [-1, 256, 2, 2] 0
Conv2d-257 [-1, 1024, 2, 2] 262,144
BatchNorm2d-258 [-1, 1024, 2, 2] 2,048
ReLU-259 [-1, 1024, 2, 2] 0
Bottleneck-260 [-1, 1024, 2, 2] 0
Conv2d-261 [-1, 256, 2, 2] 262,144
BatchNorm2d-262 [-1, 256, 2, 2] 512
ReLU-263 [-1, 256, 2, 2] 0
Conv2d-264 [-1, 256, 2, 2] 589,824
BatchNorm2d-265 [-1, 256, 2, 2] 512
ReLU-266 [-1, 256, 2, 2] 0
Conv2d-267 [-1, 1024, 2, 2] 262,144
BatchNorm2d-268 [-1, 1024, 2, 2] 2,048
ReLU-269 [-1, 1024, 2, 2] 0
Bottleneck-270 [-1, 1024, 2, 2] 0
Conv2d-271 [-1, 256, 2, 2] 262,144
BatchNorm2d-272 [-1, 256, 2, 2] 512
ReLU-273 [-1, 256, 2, 2] 0
Conv2d-274 [-1, 256, 2, 2] 589,824
BatchNorm2d-275 [-1, 256, 2, 2] 512
ReLU-276 [-1, 256, 2, 2] 0
Conv2d-277 [-1, 1024, 2, 2] 262,144
BatchNorm2d-278 [-1, 1024, 2, 2] 2,048
ReLU-279 [-1, 1024, 2, 2] 0
Bottleneck-280 [-1, 1024, 2, 2] 0
Conv2d-281 [-1, 256, 2, 2] 262,144
BatchNorm2d-282 [-1, 256, 2, 2] 512
ReLU-283 [-1, 256, 2, 2] 0
Conv2d-284 [-1, 256, 2, 2] 589,824
BatchNorm2d-285 [-1, 256, 2, 2] 512
ReLU-286 [-1, 256, 2, 2] 0
Conv2d-287 [-1, 1024, 2, 2] 262,144
BatchNorm2d-288 [-1, 1024, 2, 2] 2,048
ReLU-289 [-1, 1024, 2, 2] 0
Bottleneck-290 [-1, 1024, 2, 2] 0
Conv2d-291 [-1, 256, 2, 2] 262,144
BatchNorm2d-292 [-1, 256, 2, 2] 512
ReLU-293 [-1, 256, 2, 2] 0
Conv2d-294 [-1, 256, 2, 2] 589,824
BatchNorm2d-295 [-1, 256, 2, 2] 512
ReLU-296 [-1, 256, 2, 2] 0
Conv2d-297 [-1, 1024, 2, 2] 262,144
BatchNorm2d-298 [-1, 1024, 2, 2] 2,048
ReLU-299 [-1, 1024, 2, 2] 0
Bottleneck-300 [-1, 1024, 2, 2] 0
Conv2d-301 [-1, 256, 2, 2] 262,144
BatchNorm2d-302 [-1, 256, 2, 2] 512
ReLU-303 [-1, 256, 2, 2] 0
Conv2d-304 [-1, 256, 2, 2] 589,824
BatchNorm2d-305 [-1, 256, 2, 2] 512
ReLU-306 [-1, 256, 2, 2] 0
Conv2d-307 [-1, 1024, 2, 2] 262,144
BatchNorm2d-308 [-1, 1024, 2, 2] 2,048
ReLU-309 [-1, 1024, 2, 2] 0
Bottleneck-310 [-1, 1024, 2, 2] 0
Conv2d-311 [-1, 256, 2, 2] 262,144
BatchNorm2d-312 [-1, 256, 2, 2] 512
ReLU-313 [-1, 256, 2, 2] 0
Conv2d-314 [-1, 256, 2, 2] 589,824
BatchNorm2d-315 [-1, 256, 2, 2] 512
ReLU-316 [-1, 256, 2, 2] 0
Conv2d-317 [-1, 1024, 2, 2] 262,144
BatchNorm2d-318 [-1, 1024, 2, 2] 2,048
ReLU-319 [-1, 1024, 2, 2] 0
Bottleneck-320 [-1, 1024, 2, 2] 0
Conv2d-321 [-1, 256, 2, 2] 262,144
BatchNorm2d-322 [-1, 256, 2, 2] 512
ReLU-323 [-1, 256, 2, 2] 0
Conv2d-324 [-1, 256, 2, 2] 589,824
BatchNorm2d-325 [-1, 256, 2, 2] 512
ReLU-326 [-1, 256, 2, 2] 0
Conv2d-327 [-1, 1024, 2, 2] 262,144
BatchNorm2d-328 [-1, 1024, 2, 2] 2,048
ReLU-329 [-1, 1024, 2, 2] 0
Bottleneck-330 [-1, 1024, 2, 2] 0
Conv2d-331 [-1, 256, 2, 2] 262,144
BatchNorm2d-332 [-1, 256, 2, 2] 512
ReLU-333 [-1, 256, 2, 2] 0
Conv2d-334 [-1, 256, 2, 2] 589,824
BatchNorm2d-335 [-1, 256, 2, 2] 512
ReLU-336 [-1, 256, 2, 2] 0
Conv2d-337 [-1, 1024, 2, 2] 262,144
BatchNorm2d-338 [-1, 1024, 2, 2] 2,048
ReLU-339 [-1, 1024, 2, 2] 0
Bottleneck-340 [-1, 1024, 2, 2] 0
Conv2d-341 [-1, 256, 2, 2] 262,144
BatchNorm2d-342 [-1, 256, 2, 2] 512
ReLU-343 [-1, 256, 2, 2] 0
Conv2d-344 [-1, 256, 2, 2] 589,824
BatchNorm2d-345 [-1, 256, 2, 2] 512
ReLU-346 [-1, 256, 2, 2] 0
Conv2d-347 [-1, 1024, 2, 2] 262,144
BatchNorm2d-348 [-1, 1024, 2, 2] 2,048
ReLU-349 [-1, 1024, 2, 2] 0
Bottleneck-350 [-1, 1024, 2, 2] 0
Conv2d-351 [-1, 256, 2, 2] 262,144
BatchNorm2d-352 [-1, 256, 2, 2] 512
ReLU-353 [-1, 256, 2, 2] 0
Conv2d-354 [-1, 256, 2, 2] 589,824
BatchNorm2d-355 [-1, 256, 2, 2] 512
ReLU-356 [-1, 256, 2, 2] 0
Conv2d-357 [-1, 1024, 2, 2] 262,144
BatchNorm2d-358 [-1, 1024, 2, 2] 2,048
ReLU-359 [-1, 1024, 2, 2] 0
Bottleneck-360 [-1, 1024, 2, 2] 0
Conv2d-361 [-1, 256, 2, 2] 262,144
BatchNorm2d-362 [-1, 256, 2, 2] 512
ReLU-363 [-1, 256, 2, 2] 0
Conv2d-364 [-1, 256, 2, 2] 589,824
BatchNorm2d-365 [-1, 256, 2, 2] 512
ReLU-366 [-1, 256, 2, 2] 0
Conv2d-367 [-1, 1024, 2, 2] 262,144
BatchNorm2d-368 [-1, 1024, 2, 2] 2,048
ReLU-369 [-1, 1024, 2, 2] 0
Bottleneck-370 [-1, 1024, 2, 2] 0
Conv2d-371 [-1, 256, 2, 2] 262,144
BatchNorm2d-372 [-1, 256, 2, 2] 512
ReLU-373 [-1, 256, 2, 2] 0
Conv2d-374 [-1, 256, 2, 2] 589,824
BatchNorm2d-375 [-1, 256, 2, 2] 512
ReLU-376 [-1, 256, 2, 2] 0
Conv2d-377 [-1, 1024, 2, 2] 262,144
BatchNorm2d-378 [-1, 1024, 2, 2] 2,048
ReLU-379 [-1, 1024, 2, 2] 0
Bottleneck-380 [-1, 1024, 2, 2] 0
Conv2d-381 [-1, 256, 2, 2] 262,144
BatchNorm2d-382 [-1, 256, 2, 2] 512
ReLU-383 [-1, 256, 2, 2] 0
Conv2d-384 [-1, 256, 2, 2] 589,824
BatchNorm2d-385 [-1, 256, 2, 2] 512
ReLU-386 [-1, 256, 2, 2] 0
Conv2d-387 [-1, 1024, 2, 2] 262,144
BatchNorm2d-388 [-1, 1024, 2, 2] 2,048
ReLU-389 [-1, 1024, 2, 2] 0
Bottleneck-390 [-1, 1024, 2, 2] 0
Conv2d-391 [-1, 256, 2, 2] 262,144
BatchNorm2d-392 [-1, 256, 2, 2] 512
ReLU-393 [-1, 256, 2, 2] 0
Conv2d-394 [-1, 256, 2, 2] 589,824
BatchNorm2d-395 [-1, 256, 2, 2] 512
ReLU-396 [-1, 256, 2, 2] 0
Conv2d-397 [-1, 1024, 2, 2] 262,144
BatchNorm2d-398 [-1, 1024, 2, 2] 2,048
ReLU-399 [-1, 1024, 2, 2] 0
Bottleneck-400 [-1, 1024, 2, 2] 0
Conv2d-401 [-1, 256, 2, 2] 262,144
BatchNorm2d-402 [-1, 256, 2, 2] 512
ReLU-403 [-1, 256, 2, 2] 0
Conv2d-404 [-1, 256, 2, 2] 589,824
BatchNorm2d-405 [-1, 256, 2, 2] 512
ReLU-406 [-1, 256, 2, 2] 0
Conv2d-407 [-1, 1024, 2, 2] 262,144
BatchNorm2d-408 [-1, 1024, 2, 2] 2,048
ReLU-409 [-1, 1024, 2, 2] 0
Bottleneck-410 [-1, 1024, 2, 2] 0
Conv2d-411 [-1, 256, 2, 2] 262,144
BatchNorm2d-412 [-1, 256, 2, 2] 512
ReLU-413 [-1, 256, 2, 2] 0
Conv2d-414 [-1, 256, 2, 2] 589,824
BatchNorm2d-415 [-1, 256, 2, 2] 512
ReLU-416 [-1, 256, 2, 2] 0
Conv2d-417 [-1, 1024, 2, 2] 262,144
BatchNorm2d-418 [-1, 1024, 2, 2] 2,048
ReLU-419 [-1, 1024, 2, 2] 0
Bottleneck-420 [-1, 1024, 2, 2] 0
Conv2d-421 [-1, 256, 2, 2] 262,144
BatchNorm2d-422 [-1, 256, 2, 2] 512
ReLU-423 [-1, 256, 2, 2] 0
Conv2d-424 [-1, 256, 2, 2] 589,824
BatchNorm2d-425 [-1, 256, 2, 2] 512
ReLU-426 [-1, 256, 2, 2] 0
Conv2d-427 [-1, 1024, 2, 2] 262,144
BatchNorm2d-428 [-1, 1024, 2, 2] 2,048
ReLU-429 [-1, 1024, 2, 2] 0
Bottleneck-430 [-1, 1024, 2, 2] 0
Conv2d-431 [-1, 256, 2, 2] 262,144
BatchNorm2d-432 [-1, 256, 2, 2] 512
ReLU-433 [-1, 256, 2, 2] 0
Conv2d-434 [-1, 256, 2, 2] 589,824
BatchNorm2d-435 [-1, 256, 2, 2] 512
ReLU-436 [-1, 256, 2, 2] 0
Conv2d-437 [-1, 1024, 2, 2] 262,144
BatchNorm2d-438 [-1, 1024, 2, 2] 2,048
ReLU-439 [-1, 1024, 2, 2] 0
Bottleneck-440 [-1, 1024, 2, 2] 0
Conv2d-441 [-1, 256, 2, 2] 262,144
BatchNorm2d-442 [-1, 256, 2, 2] 512
ReLU-443 [-1, 256, 2, 2] 0
Conv2d-444 [-1, 256, 2, 2] 589,824
BatchNorm2d-445 [-1, 256, 2, 2] 512
ReLU-446 [-1, 256, 2, 2] 0
Conv2d-447 [-1, 1024, 2, 2] 262,144
BatchNorm2d-448 [-1, 1024, 2, 2] 2,048
ReLU-449 [-1, 1024, 2, 2] 0
Bottleneck-450 [-1, 1024, 2, 2] 0
Conv2d-451 [-1, 256, 2, 2] 262,144
BatchNorm2d-452 [-1, 256, 2, 2] 512
ReLU-453 [-1, 256, 2, 2] 0
Conv2d-454 [-1, 256, 2, 2] 589,824
BatchNorm2d-455 [-1, 256, 2, 2] 512
ReLU-456 [-1, 256, 2, 2] 0
Conv2d-457 [-1, 1024, 2, 2] 262,144
BatchNorm2d-458 [-1, 1024, 2, 2] 2,048
ReLU-459 [-1, 1024, 2, 2] 0
Bottleneck-460 [-1, 1024, 2, 2] 0
Conv2d-461 [-1, 256, 2, 2] 262,144
BatchNorm2d-462 [-1, 256, 2, 2] 512
ReLU-463 [-1, 256, 2, 2] 0
Conv2d-464 [-1, 256, 2, 2] 589,824
BatchNorm2d-465 [-1, 256, 2, 2] 512
ReLU-466 [-1, 256, 2, 2] 0
Conv2d-467 [-1, 1024, 2, 2] 262,144
BatchNorm2d-468 [-1, 1024, 2, 2] 2,048
ReLU-469 [-1, 1024, 2, 2] 0
Bottleneck-470 [-1, 1024, 2, 2] 0
Conv2d-471 [-1, 256, 2, 2] 262,144
BatchNorm2d-472 [-1, 256, 2, 2] 512
ReLU-473 [-1, 256, 2, 2] 0
Conv2d-474 [-1, 256, 2, 2] 589,824
BatchNorm2d-475 [-1, 256, 2, 2] 512
ReLU-476 [-1, 256, 2, 2] 0
Conv2d-477 [-1, 1024, 2, 2] 262,144
BatchNorm2d-478 [-1, 1024, 2, 2] 2,048
ReLU-479 [-1, 1024, 2, 2] 0
Bottleneck-480 [-1, 1024, 2, 2] 0
Conv2d-481 [-1, 512, 2, 2] 524,288
BatchNorm2d-482 [-1, 512, 2, 2] 1,024
ReLU-483 [-1, 512, 2, 2] 0
Conv2d-484 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-485 [-1, 512, 1, 1] 1,024
ReLU-486 [-1, 512, 1, 1] 0
Conv2d-487 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-488 [-1, 2048, 1, 1] 4,096
Conv2d-489 [-1, 2048, 1, 1] 2,097,152
BatchNorm2d-490 [-1, 2048, 1, 1] 4,096
ReLU-491 [-1, 2048, 1, 1] 0
Bottleneck-492 [-1, 2048, 1, 1] 0
Conv2d-493 [-1, 512, 1, 1] 1,048,576
BatchNorm2d-494 [-1, 512, 1, 1] 1,024
ReLU-495 [-1, 512, 1, 1] 0
Conv2d-496 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-497 [-1, 512, 1, 1] 1,024
ReLU-498 [-1, 512, 1, 1] 0
Conv2d-499 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-500 [-1, 2048, 1, 1] 4,096
ReLU-501 [-1, 2048, 1, 1] 0
Bottleneck-502 [-1, 2048, 1, 1] 0
Conv2d-503 [-1, 512, 1, 1] 1,048,576
BatchNorm2d-504 [-1, 512, 1, 1] 1,024
ReLU-505 [-1, 512, 1, 1] 0
Conv2d-506 [-1, 512, 1, 1] 2,359,296
BatchNorm2d-507 [-1, 512, 1, 1] 1,024
ReLU-508 [-1, 512, 1, 1] 0
Conv2d-509 [-1, 2048, 1, 1] 1,048,576
BatchNorm2d-510 [-1, 2048, 1, 1] 4,096
ReLU-511 [-1, 2048, 1, 1] 0
Bottleneck-512 [-1, 2048, 1, 1] 0
AdaptiveAvgPool2d-513 [-1, 2048, 1, 1] 0
Linear-514 [-1, 100] 204,900
LogSoftmax-515 [-1, 100] 0
================================================================
Total params: 58,348,708
Trainable params: 204,900
Non-trainable params: 58,143,808
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 12.40
Params size (MB): 222.58
Estimated Total Size (MB): 234.99
----------------------------------------------------------------
None
Params to learn
fc.0.weight
fc.0.bias
Files already downloaded and verified
Files already downloaded and verified
Epoch 0/9
----------
Time elapsed 0m 21s
train Loss: 7.5111 Acc: 0.1484
Time elapsed 0m 26s
valid Loss: 3.7821 Acc: 0.2493
/usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:154: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.
warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
Optimizer learning rate: 0.0100000

Epoch 1/9
----------
Time elapsed 0m 47s
train Loss: 2.9405 Acc: 0.3109
Time elapsed 0m 52s
valid Loss: 3.2014 Acc: 0.2739
Optimizer learning rate: 0.0100000

Epoch 2/9
----------
Time elapsed 1m 12s
train Loss: 2.5866 Acc: 0.3622
Time elapsed 1m 17s
valid Loss: 3.2239 Acc: 0.2787
Optimizer learning rate: 0.0100000

Epoch 3/9
----------
Time elapsed 1m 38s
train Loss: 2.4077 Acc: 0.3969
Time elapsed 1m 43s
valid Loss: 3.2608 Acc: 0.2811
Optimizer learning rate: 0.0100000

Epoch 4/9
----------
Time elapsed 2m 4s
train Loss: 2.2742 Acc: 0.4263
Time elapsed 2m 9s
valid Loss: 3.4260 Acc: 0.2689
Optimizer learning rate: 0.0100000

Epoch 5/9
----------
Time elapsed 2m 29s
train Loss: 2.1942 Acc: 0.4434
Time elapsed 2m 34s
valid Loss: 3.4697 Acc: 0.2760
Optimizer learning rate: 0.0100000

Epoch 6/9
----------
Time elapsed 2m 54s
train Loss: 2.1369 Acc: 0.4583
Time elapsed 2m 59s
valid Loss: 3.5391 Acc: 0.2744
Optimizer learning rate: 0.0100000

Epoch 7/9
----------
Time elapsed 3m 20s
train Loss: 2.0382 Acc: 0.4771
Time elapsed 3m 24s
valid Loss: 3.5992 Acc: 0.2721
Optimizer learning rate: 0.0100000

Epoch 8/9
----------
Time elapsed 3m 45s
train Loss: 1.9776 Acc: 0.4939
Time elapsed 3m 50s
valid Loss: 3.7533 Acc: 0.2685
Optimizer learning rate: 0.0100000

Epoch 9/9
----------
Time elapsed 4m 11s
train Loss: 1.9309 Acc: 0.5035
Time elapsed 4m 16s
valid Loss: 3.9663 Acc: 0.2558
Optimizer learning rate: 0.0100000

Training complete in 4m 16s
Best val Acc: 0.281100

到此這篇關(guān)于PyTorch一小時掌握之遷移學(xué)習(xí)篇的文章就介紹到這了,更多相關(guān)PyTorch遷移學(xué)習(xí)內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Pytorch模型遷移和遷移學(xué)習(xí),導(dǎo)入部分模型參數(shù)的操作
  • PyTorch 遷移學(xué)習(xí)實(shí)踐(幾分鐘即可訓(xùn)練好自己的模型)

標(biāo)簽:蘭州 紹興 吉安 懷化 呂梁 安康 蕪湖 廣西

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《PyTorch一小時掌握之遷移學(xué)習(xí)篇》,本文關(guān)鍵詞  PyTorch,一小時,掌握,之,遷移,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《PyTorch一小時掌握之遷移學(xué)習(xí)篇》相關(guān)的同類信息!
  • 本頁收集關(guān)于PyTorch一小時掌握之遷移學(xué)習(xí)篇的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    男人操女人免费网站| 国产精品高潮呻吟AV无码| 久久精品视频18| 国产精品aaaa| 在线观看18视频网站| 日本一区二区三区在线观看| 精品亚洲永久免费| 精品伦精品一区二区三区视频| theav精尽人亡av| www.国产色| 欧美激情在线精品一区二区三区| 色91精品久久久久久久久| 欧美成人乱码一二三四区免费| 亚洲欧洲日本精品| 人人做人人草| 日本波多野结衣在线| 亚洲三级观看| 一本一本久久a久久精品综合麻豆| 亚洲综合激情六月婷婷在线观看| 三级毛片在线免费看| 少妇高潮久久久| 国产黄色片在线播放| 久久久久久久久国产一区| 亚洲欧美中日韩| 欧美日韩综合网| 欧美破处大片在线视频| 精品欧美一区二区精品少妇| 中文字幕免费国产精品| 国产91丝袜在线播放| 久久久成人免费视频| 日韩成人精品一区二区三区| 美女被艹视频网站| sm性调教片在线观看| 天堂在线视频免费| 国产精品77777竹菊影视小说| 九色视频入口| 我家有个日本女人| 久久国产人妖系列| 国产日韩欧美综合一区| 亚洲自拍偷拍一区二区三区| 国产精品免费视频一区二区三区| 疯狂试爱三2浴室激情视频| 欧美在线观看一区二区三区| 五月婷婷婷婷婷| 国产欧美一区二区三区鸳鸯浴| 精品成人在线视频| 欧美午夜精品久久久久久久| 国产成人午夜视频| 人妖一区二区三区| 色欲av无码一区二区人妻| 国精产品999国精产品官网| 精品少妇人欧美激情在线观看| 九九九久久国产免费| 亚洲欧洲国产日本综合| 日韩精品无码一区二区三区| 狠狠97人人婷婷五月| 狠狠人妻久久久久久综合| 色偷偷色偷偷色偷偷在线视频| 国产精品久久免费看| 在线永久免费观看黄网站| 国产喷水在线观看| 宅男噜噜99国产精品观看免费| 曰本三级在线| 日韩欧美精品一区二区| 亚洲成人午夜电影| 你懂的网址视频| 国产精品s色| 国产高清一区日本| 精品国产欧美一区二区| 国产精品99久久久久久有的能看| 亚洲一区精彩视频| 日本精品久久久久久久久久| 精品av综合导航| 亚洲精品综合在线观看| 天天色天天综合| 欧美办公室脚交xxxx| 一区二区在线免费| 国产在线精品视频| 久久精品亚洲乱码伦伦中文| 美女在线视频一区| 麻豆一区在线观看| 99re这里都是精品| 亚洲电影在线免费观看| av福利在线| 色吊丝av中文字幕| 精品视频高潮| 丁香久久综合| 国产精品一区二区三区www| 久久99热99| 在线观看av网页| 美女的尿口免费视频| 亚洲色图欧洲色图| 国产视频网站一区二区三区| 久久人人爽人人人人片| 欧美成人官网二区| 国产精品中出一区二区三区| 久久看人人爽人人| av观看在线| 蜜桃久久一区二区三区| 欧美日韩有码| 日韩一级av毛片| 99re8这里只有精品| 精品乱色一区二区中文字幕| 黄色在线观看网站| 久久网中文字幕| 亚洲国产精品毛片| 精品调教chinesegay| 中文字幕在线观看高清| 99pao成人国产永久免费视频| 成人一级免费视频| 中文文字幕一区二区三三| 中文字幕乱码在线观看| 日本日本精品二区免费| 91久久在线观看| 久久99偷拍| 久久久久久午夜| 免费看国产黄色片| 色久优优欧美色久优优| 精品剧情v国产在线观看| 国产aⅴ精品一区二区三区色成熟| 国产情侣高潮对白| 国产日产欧美一区二区三区| 国产清纯美女被跳蛋高潮一区二区久久w| 免费黄色小网站| 国产精品一区二区美女视频免费看| 中文字字幕码一二三区| 国产又粗又黄又猛| 九热这里只有精品| 亚洲视频日韩精品| 亲子伦视频一区二区三区| 97婷婷大伊香蕉精品视频| 亚洲国产私拍精品国模在线观看| 国产一区二区三区精品在线| 88久久精品无码一区二区毛片| 91玉足脚交白嫩脚丫| 国产美女自拍| 亚洲 欧美 激情 小说 另类| 国产一区玩具在线观看| 欧美精品videossex变态| 国产精品久久久久久免费播放| 久久久久88色偷偷| 少妇一区视频| 成人午夜视频免费看| 手机免费看av片| 日韩黄色影院| 国产精品无码人妻一区二区在线| 中文字幕导航| 日韩精品一级二级| 毛片在线免费| 国产精品主播在线观看| 色九视频91| 青青草国产一区二区三区| 日韩av毛片在线观看| 性欧美丰满熟妇xxxx性仙踪林| 丰满少妇高潮一区二区| 在线视频国产福利| 日本成人手机在线| 国产精品欧美韩国日本久久| 国产色无码精品视频国产| 欧美色欧美亚洲另类| 国产免费一区二区三区在线观看| 日韩av中文字幕在线| 91麻豆国产精品| 日韩欧美激情视频| 国产日韩欧美在线视频观看| 黑人巨大精品一区二区在线| 日韩一区二区免费电影| 久久97超碰国产精品超碰| 亚洲成av人片在线观看无| 一级片a一级片| 性欧美精品高清| 日韩免费大片| 五月天丁香激情| 中文字幕亚洲区| 美国精品一区二区| 成人黄18免费网站| 欧美国产精品一二三| 91av免费看| 和岳每晚弄的高潮嗷嗷叫视频| www.亚洲一二| 在线欧美激情| 亚洲一区二区三区精品在线观看| 伊人天天久久大香线蕉av色| 2021中文字幕在线| 成人性生交大片免费看无遮挡aⅴ| 一本久道久久综合中文字幕| 女同性恋一区二区三区| 亚洲欧洲国产综合| 在线播放日韩精品| 亚洲成在人线在线播放| 黄色精品视频在线观看| 亚洲第一区色| 日日夜夜国产| 美女被羞羞网站| 欧美丰满熟妇bbb久久久| 全亚洲最色的网站在线观看| 亚洲主播在线播放| 91网站在线观看免费| 一区二区三区在线免费| 领导边摸边吃奶边做爽在线观看| www.激情.com| 九色丨蝌蚪丨成人| 午夜精彩国产免费不卡不顿大片| 欧美黄色免费网站| 亚洲国产欧美日韩在线| 秋霞影视一区二区三区| 97国产精品视频| 国产网站在线看| 国产在线日韩精品| 成人午夜在线影院| 日本一区视频在线播放| 国产成人精品片| 高清视频一区二区三区四区| 日本欧美视频| 久久se精品一区二区| 国产精品1区2区3区4区| 欧美国产日韩在线观看成人| 99久久激情视频| 浴室偷拍美女洗澡456在线| 亚洲免费视频二区| 亚洲国产精品久久久久久女王| 99产精品成人啪免费网站| 欧美丰满熟妇bbbbbb| 欧美日韩免费观看一区=区三区| heyzo一本久久综合| 日韩专区在线播放| 88国产精品视频一区二区三区| 亚洲成a人片在线www| 黄网站色欧美视频| 中文字幕第315页| 精品国产一区二区三区在线| 55夜色66夜色国产精品视频| 亚洲成a天堂v人片| 国产在线精品一区在线观看麻豆| 亚洲欧美一区二区三区情侣bbw| 亚洲男人的天堂在线视频| 日本久久伊人| 99久久国产热无码精品免费| 国产精品白嫩美女在线观看| 中文在线观看免费网站| 中文字幕国产综合| 爱爱爱爱免费视频| 免费大片黄在线观看视频网站| 欧美国产欧美亚州国产日韩mv天天看完整| 亚洲综合另类| 日韩电影在线观看网站| 成人美女在线视频| 国产精品一区二区三区www| 亚洲视频精选| 国产精品v欧美精品∨日韩| 韩国精品视频在线观看| 成人黄色网址| 久久97超碰国产精品超碰| 国产精品久久久久久网站| bt7086福利一区国产| 福利一区二区三区四区| 91理论电影在线观看| 日韩av免费网址| 国产成人精品一区二区三区| 97色成人综合网站| 中文字幕欧美专区| 西西444www无码大胆| 国产拍在线视频| 国产视频精品免费| 美丽的小蜜桃4春潮| 久无码久无码av无码| 韩国av在线免费观看| 亚洲黄色一区二区| 国产婷婷一区二区三区久久| 女同激情久久av久久| yw3121.龙物视频永不失联| 麻豆乱码国产一区二区三区| 国产欧美一区二区三区在线看蜜臀| rebdb初裸写真在线观看| 亚洲精品爱爱久久| 欧美亚日韩国产aⅴ精品中极品| 国产综合动作在线观看| 日韩一区二区三区免费| 99电影网电视剧在线观看| 中国一级特黄毛片大片| 国产一级片免费| 亚洲AV无码精品国产| 欧美日韩精品免费观看| 一级全黄少妇性色生活片| 久久香蕉国产线看观看av| 国产资源精品在线观看| 先锋影音二区| 国产精品日本一区二区三区在线| 欧美精品黑人猛交高潮| 亚洲老头同性xxxxx| 国产精品乱人伦一区二区| 欧美极品xxxx| 亚洲精品aaaaa| 国产精品久久久久久中文字| 手机看片1024国产| 美女脱光衣服与内衣内裤一区二区三区四区| 久久国内精品一国内精品| 国产精品入口麻豆九色| 欧美性性性性性ⅹxxbbbb| 日韩网红少妇无码视频香港| 91tv精品福利国产在线观看| 亚洲欧美综合精品久久成人| 欧美天堂亚洲电影院在线播放| 雨宫琴音一区二区三区| 乱人伦中文视频在线| 国内精品伊人久久久久影院对白| 日韩av一区二区三区美女毛片| 中文字幕av片| 高清免费成人av| 蜜桃视频在线观看一区二区| 日韩精品在线一区二区| 中文字幕在线观看国产| 99久久精品免费看| 色综合中文字幕| 国产精品久久久久久亚洲影视| 国产草草影院ccyycom| 欧美日本不卡视频| 亚洲视频中文字幕在线观看| 日韩欧美国产系列| 国产传媒在线播放| 成人动漫一区二区三区| 精品黑人一区二区三区观看时间| 久久91av| 久热中文字幕在线| 国产一区二区三区不卡免费观看| 日韩av成人在线| 精品国产91久久久久久久妲己| 国产精品久久久久77777丨|