成人性生交大片免费看视频r_亚洲综合极品香蕉久久网_在线视频免费观看一区_亚洲精品亚洲人成人网在线播放_国产精品毛片av_久久久久国产精品www_亚洲国产一区二区三区在线播_日韩一区二区三区四区区区_亚洲精品国产无套在线观_国产免费www

主頁 > 知識(shí)庫 > 詳解TensorFlow2實(shí)現(xiàn)線性回歸

詳解TensorFlow2實(shí)現(xiàn)線性回歸

熱門標(biāo)簽:高德地圖標(biāo)注收入咋樣 萊蕪電信外呼系統(tǒng) 怎么辦理400客服電話 B52系統(tǒng)電梯外呼顯示E7 銀川電話機(jī)器人電話 鶴壁手機(jī)自動(dòng)外呼系統(tǒng)違法嗎 企業(yè)微信地圖標(biāo)注 沈陽防封電銷電話卡 地圖標(biāo)注多個(gè)

概述

線性回歸 (Linear Regression) 是利用回歸分析來確定兩種或兩種以上變量間相互依賴的定量關(guān)系.

對(duì)線性回歸還不是很了解的同學(xué)可以看一下這篇文章:

python深度總結(jié)線性回歸

MSE

均方誤差 (Mean Square Error): 是用來描述連續(xù)誤差的一種方法. 公式:

y_predict: 我們預(yù)測(cè)的值y_real: 真實(shí)值

線性回歸

公式

w: weight, 權(quán)重系數(shù)

b: bias, 偏置頂

x: 特征值

y: 預(yù)測(cè)值

梯度下降

梯度下降 (Gradient Descent) 是一種優(yōu)化算法. 參數(shù)會(huì)沿著梯度相反的方向前進(jìn), 以實(shí)現(xiàn)損失函數(shù) (loss function) 的最小化.

計(jì)算公式:

w: weight, 權(quán)重參數(shù)

w': 更新后的 weight

lr : learning rate, 學(xué)習(xí)率

dloss/dw: 損失函數(shù)對(duì) w 求導(dǎo)

w: weight, 權(quán)重參數(shù)

w': 更新后的 weight

lr : learning rate, 學(xué)習(xí)率

dloss/dw: 損失函數(shù)對(duì) b 求導(dǎo)

線性回歸實(shí)現(xiàn)

計(jì)算 MSE

def calculate_MSE(w, b, points):
    """
    計(jì)算誤差MSE
    :param w: weight, 權(quán)重
    :param b: bias, 偏置頂
    :param points: 數(shù)據(jù)
    :return: 返回MSE (Mean Square Error)
    """

    total_error = 0  # 存放總誤差, 初始化為0

    # 遍歷數(shù)據(jù)
    for i in range(len(points)):
        # 取出x, y
        x = points.iloc[i, 0]  # 第一列
        y = points.iloc[i, 1]  # 第二列

        # 計(jì)算MSE
        total_error += (y - (w * x + b)) ** 2  # 計(jì)總誤差
        MSE = total_error / len(points)  # 計(jì)算平均誤差

    # 返回MSE
    return MSE

梯度下降

def step_gradient(index, w_current, b_current, points, learning_rate=0.0001):
    """
    計(jì)算梯度下降, 跟新權(quán)重
    :param index: 現(xiàn)行迭代編號(hào)
    :param w_current: weight, 權(quán)重
    :param b_current: bias, 偏置頂
    :param points: 數(shù)據(jù)
    :param learning_rate: lr, 學(xué)習(xí)率 (默認(rèn)值: 0.0001)
    :return: 返回跟新過后的參數(shù)數(shù)組
    """

    b_gradient = 0  # b的導(dǎo), 初始化為0
    w_gradient = 0  # w的導(dǎo), 初始化為0
    N = len(points)  # 數(shù)據(jù)長度

    # 遍歷數(shù)據(jù)
    for i in range(len(points)):
        # 取出x, y
        x = points.iloc[i, 0]  # 第一列
        y = points.iloc[i, 1]  # 第二列

        # 計(jì)算w的導(dǎo), w的導(dǎo) = 2x(wx+b-y)
        w_gradient += (2 / N) * x * ((w_current * x + b_current) - y)

        # 計(jì)算b的導(dǎo), b的導(dǎo) = 2(wx+b-y)
        b_gradient += (2 / N) * ((w_current * x + b_current) - y)

    # 跟新w和b
    w_new = w_current - (learning_rate * w_gradient)  # 下降導(dǎo)數(shù)*學(xué)習(xí)率
    b_new = b_current - (learning_rate * b_gradient)  # 下降導(dǎo)數(shù)*學(xué)習(xí)率

    # 每迭代10次, 調(diào)試輸出
    if index % 10 == 0:
        print("This is the {}th iterations w = {}, b = {}, error = {}"
              .format(index, w_new, b_new,
                      calculate_MSE(w_new, b_new, points)))

    # 返回更新后的權(quán)重和偏置頂
    return [w_new, b_new]

迭代訓(xùn)練

def runner(w_start, b_start, points, learning_rate, num_iterations):
    """
    迭代訓(xùn)練
    :param w_start: 初始weight
    :param b_start: 初始bias
    :param points: 數(shù)據(jù)
    :param learning_rate: 學(xué)習(xí)率
    :param num_iterations: 迭代次數(shù)
    :return: 訓(xùn)練好的權(quán)重和偏執(zhí)頂
    """

    # 定義w_end, b_end, 存放返回權(quán)重
    w_end = w_start
    b_end = b_start

    # 更新權(quán)重
    for i in range(1, num_iterations + 1):
        w_end, b_end = step_gradient(i, w_end, b_end, points, learning_rate)

    # 返回訓(xùn)練好的b, w
    return [w_end, b_end]

主函數(shù)

def run():
    """
    主函數(shù)
    :return: 無返回值
    """

    # 讀取數(shù)據(jù)
    data = pd.read_csv("data.csv")  

    # 定義超參數(shù)
    learning_rate = 0.00001  # 學(xué)習(xí)率
    w_initial = 0  # 權(quán)重初始化
    b_initial = 0  # 偏置頂初始化
    w_end = 0  # 存放返回結(jié)果
    b_end = 0  # 存放返回結(jié)果
    num_interations = 200  # 迭代次數(shù)

    # 調(diào)試輸出初始誤差
    print("Starting gradient descent at w = {}, b = {}, error = {}"
          .format(w_initial, b_initial, calculate_MSE(w_initial, b_initial, data)))
    print("Running...")

    # 得到訓(xùn)練好的值
    w_end, b_end = runner(w_initial, b_initial, data, learning_rate, num_interations, )

    # 調(diào)試輸出訓(xùn)練后的誤差
    print("\nAfter {} iterations w = {}, b = {}, error = {}"
          .format(num_interations, w_end, b_end, calculate_MSE(w_end, b_end, data)))

完整代碼

import pandas as pd
import tensorflow as tf


def run():
    """
    主函數(shù)
    :return: 無返回值
    """

    # 讀取數(shù)據(jù)
    data = pd.read_csv("data.csv")

    # 定義超參數(shù)
    learning_rate = 0.00001  # 學(xué)習(xí)率
    w_initial = 0  # 權(quán)重初始化
    b_initial = 0  # 偏置頂初始化
    w_end = 0  # 存放返回結(jié)果
    b_end = 0  # 存放返回結(jié)果
    num_interations = 200  # 迭代次數(shù)

    # 調(diào)試輸出初始誤差
    print("Starting gradient descent at w = {}, b = {}, error = {}"
          .format(w_initial, b_initial, calculate_MSE(w_initial, b_initial, data)))
    print("Running...")

    # 得到訓(xùn)練好的值
    w_end, b_end = runner(w_initial, b_initial, data, learning_rate, num_interations, )

    # 調(diào)試輸出訓(xùn)練后的誤差
    print("\nAfter {} iterations w = {}, b = {}, error = {}"
          .format(num_interations, w_end, b_end, calculate_MSE(w_end, b_end, data)))


def calculate_MSE(w, b, points):
    """
    計(jì)算誤差MSE
    :param w: weight, 權(quán)重
    :param b: bias, 偏置頂
    :param points: 數(shù)據(jù)
    :return: 返回MSE (Mean Square Error)
    """

    total_error = 0  # 存放總誤差, 初始化為0

    # 遍歷數(shù)據(jù)
    for i in range(len(points)):
        # 取出x, y
        x = points.iloc[i, 0]  # 第一列
        y = points.iloc[i, 1]  # 第二列

        # 計(jì)算MSE
        total_error += (y - (w * x + b)) ** 2  # 計(jì)總誤差
        MSE = total_error / len(points)  # 計(jì)算平均誤差

    # 返回MSE
    return MSE


def step_gradient(index, w_current, b_current, points, learning_rate=0.0001):
    """
    計(jì)算梯度下降, 跟新權(quán)重
    :param index: 現(xiàn)行迭代編號(hào)
    :param w_current: weight, 權(quán)重
    :param b_current: bias, 偏置頂
    :param points: 數(shù)據(jù)
    :param learning_rate: lr, 學(xué)習(xí)率 (默認(rèn)值: 0.0001)
    :return: 返回跟新過后的參數(shù)數(shù)組
    """

    b_gradient = 0  # b的導(dǎo), 初始化為0
    w_gradient = 0  # w的導(dǎo), 初始化為0
    N = len(points)  # 數(shù)據(jù)長度

    # 遍歷數(shù)據(jù)
    for i in range(len(points)):
        # 取出x, y
        x = points.iloc[i, 0]  # 第一列
        y = points.iloc[i, 1]  # 第二列

        # 計(jì)算w的導(dǎo), w的導(dǎo) = 2x(wx+b-y)
        w_gradient += (2 / N) * x * ((w_current * x + b_current) - y)

        # 計(jì)算b的導(dǎo), b的導(dǎo) = 2(wx+b-y)
        b_gradient += (2 / N) * ((w_current * x + b_current) - y)

    # 跟新w和b
    w_new = w_current - (learning_rate * w_gradient)  # 下降導(dǎo)數(shù)*學(xué)習(xí)率
    b_new = b_current - (learning_rate * b_gradient)  # 下降導(dǎo)數(shù)*學(xué)習(xí)率

    # 每迭代10次, 調(diào)試輸出
    if index % 10 == 0:
        print("This is the {}th iterations w = {}, b = {}, error = {}"
              .format(index, w_new, b_new,
                      calculate_MSE(w_new, b_new, points)))

    # 返回更新后的權(quán)重和偏置頂
    return [w_new, b_new]


def runner(w_start, b_start, points, learning_rate, num_iterations):
    """
    迭代訓(xùn)練
    :param w_start: 初始weight
    :param b_start: 初始bias
    :param points: 數(shù)據(jù)
    :param learning_rate: 學(xué)習(xí)率
    :param num_iterations: 迭代次數(shù)
    :return: 訓(xùn)練好的權(quán)重和偏執(zhí)頂
    """

    # 定義w_end, b_end, 存放返回權(quán)重
    w_end = w_start
    b_end = b_start

    # 更新權(quán)重
    for i in range(1, num_iterations + 1):
        w_end, b_end = step_gradient(i, w_end, b_end, points, learning_rate)

    # 返回訓(xùn)練好的b, w
    return [w_end, b_end]


if __name__ == "__main__":  # 判斷是否為直接運(yùn)行
    # 執(zhí)行主函數(shù)
    run()

輸出結(jié)果:

Starting gradient descent at w = 0, b = 0, error = 5611.166153823905
Running...
This is the 10th iterations w = 0.5954939346814911, b = 0.011748797759247776, error = 2077.4540105037636
This is the 20th iterations w = 0.9515563561471605, b = 0.018802975867006404, error = 814.0851271130122
This is the 30th iterations w = 1.1644557718428263, b = 0.023050105300353223, error = 362.4068500146176
This is the 40th iterations w = 1.291753898278705, b = 0.02561881917471017, error = 200.92329896151622
This is the 50th iterations w = 1.3678685455519075, b = 0.027183959773995233, error = 143.18984477036037
This is the 60th iterations w = 1.4133791147591803, b = 0.02814903475888354, error = 122.54901023376003
This is the 70th iterations w = 1.4405906232245687, b = 0.028755312994862656, error = 115.16948797045545
This is the 80th iterations w = 1.4568605956220553, b = 0.029147056093611835, error = 112.53113537539161
This is the 90th iterations w = 1.4665883081088924, b = 0.029410522232548166, error = 111.58784050644537
This is the 100th iterations w = 1.4724042147529013, b = 0.029597287663210802, error = 111.25056079777497
This is the 110th iterations w = 1.475881139890538, b = 0.029738191313600983, error = 111.12994295811941
This is the 120th iterations w = 1.477959520545057, b = 0.02985167266801462, error = 111.08678583026905
This is the 130th iterations w = 1.479201671130221, b = 0.029948757225817496, error = 111.07132237076124
This is the 140th iterations w = 1.4799438156483897, b = 0.03003603745100295, error = 111.06575992136905
This is the 150th iterations w = 1.480386992125614, b = 0.030117455167888288, error = 111.06373727064113
This is the 160th iterations w = 1.4806514069946144, b = 0.030195367306897165, error = 111.0629801653088
This is the 170th iterations w = 1.4808089351476725, b = 0.030271183144693698, error = 111.06267551686379
This is the 180th iterations w = 1.4809025526554018, b = 0.030345745328433527, error = 111.0625326308038
This is the 190th iterations w = 1.4809579561496398, b = 0.030419557701150367, error = 111.0624475783524
This is the 200th iterations w = 1.480990510387525, b = 0.030492921525124016, error = 111.06238320300855
This is the 210th iterations w = 1.4810094024003952, b = 0.030566016933760057, error = 111.06232622062124
This is the 220th iterations w = 1.4810201253791957, b = 0.030638951634017437, error = 111.0622718818556
This is the 230th iterations w = 1.4810259638611891, b = 0.030711790026994222, error = 111.06221848873447
This is the 240th iterations w = 1.481028881765914, b = 0.030784570619965538, error = 111.06216543419914
This is the 250th iterations w = 1.4810300533774932, b = 0.030857316437543122, error = 111.06211250121454
This is the 260th iterations w = 1.4810301808342632, b = 0.03093004124680784, error = 111.06205961218657
This is the 270th iterations w = 1.4810296839649824, b = 0.031002753279495907, error = 111.06200673937376
This is the 280th iterations w = 1.4810288137973704, b = 0.031075457457601333, error = 111.06195387285815
This is the 290th iterations w = 1.48102772042814, b = 0.031148156724127858, error = 111.06190100909376
This is the 300th iterations w = 1.4810264936044433, b = 0.03122085283878386, error = 111.06184814681296
This is the 310th iterations w = 1.4810251869886903, b = 0.0312935468537513, error = 111.06179528556238
This is the 320th iterations w = 1.4810238326671836, b = 0.031366239398161695, error = 111.0617424251801
This is the 330th iterations w = 1.4810224498252484, b = 0.031438930848192506, error = 111.06168956560795
This is the 340th iterations w = 1.481021049934344, b = 0.03151162142877266, error = 111.06163670682551
This is the 350th iterations w = 1.4810196398535866, b = 0.03158431127439525, error = 111.06158384882504
This is the 360th iterations w = 1.4810182236842395, b = 0.03165700046547913, error = 111.0615309916041
This is the 370th iterations w = 1.4810168038785667, b = 0.031729689050110664, error = 111.06147813516172
This is the 380th iterations w = 1.4810153819028469, b = 0.03180237705704362, error = 111.06142527949757
This is the 390th iterations w = 1.48101395863381, b = 0.03187506450347233, error = 111.06137242461139
This is the 400th iterations w = 1.48101253459568, b = 0.03194775139967933, error = 111.06131957050317
This is the 410th iterations w = 1.4810111101019028, b = 0.03202043775181446, error = 111.06126671717288
This is the 420th iterations w = 1.4810096853398989, b = 0.032093123563556446, error = 111.06121386462064
This is the 430th iterations w = 1.4810082604217312, b = 0.032165808837106485, error = 111.06116101284626
This is the 440th iterations w = 1.481006835414406, b = 0.03223849357378233, error = 111.06110816184975
This is the 450th iterations w = 1.4810054103579875, b = 0.03231117777437349, error = 111.06105531163115
This is the 460th iterations w = 1.4810039852764323, b = 0.0323838614393536, error = 111.06100246219052
This is the 470th iterations w = 1.4810025601840635, b = 0.032456544569007456, error = 111.0609496135277
This is the 480th iterations w = 1.4810011350894463, b = 0.03252922716350693, error = 111.06089676564281
This is the 490th iterations w = 1.4809997099977015, b = 0.032601909222956374, error = 111.06084391853577
This is the 500th iterations w = 1.4809982849118903, b = 0.032674590747419754, error = 111.0607910722065

After 500 iterations w = 1.4809982849118903, b = 0.032674590747419754, error = 111.0607910722065

到此這篇關(guān)于詳解TensorFlow2實(shí)現(xiàn)線性回歸的文章就介紹到這了,更多相關(guān)TensorFlow2線性回歸內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • 一小時(shí)學(xué)會(huì)TensorFlow2之基本操作1實(shí)例代碼
  • 詳解TensorFlow2實(shí)現(xiàn)前向傳播
  • tensorflow2 自定義損失函數(shù)使用的隱藏坑
  • tensorflow2.0實(shí)現(xiàn)復(fù)雜神經(jīng)網(wǎng)絡(luò)(多輸入多輸出nn,Resnet)
  • tensorflow2.0教程之Keras快速入門
  • 一小時(shí)學(xué)會(huì)TensorFlow2基本操作之合并分割與統(tǒng)計(jì)

標(biāo)簽:湘西 銀川 三亞 烏魯木齊 呼倫貝爾 安慶 呼倫貝爾 葫蘆島

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《詳解TensorFlow2實(shí)現(xiàn)線性回歸》,本文關(guān)鍵詞  詳解,TensorFlow2,實(shí)現(xiàn),線性,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《詳解TensorFlow2實(shí)現(xiàn)線性回歸》相關(guān)的同類信息!
  • 本頁收集關(guān)于詳解TensorFlow2實(shí)現(xiàn)線性回歸的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    91蜜桃传媒精品久久久一区二区| 国产精品久久久久久久久久| 久久精品国产99国产| 国产一线二线在线观看| 激情综合网五月婷婷| 国产日产精品一区二区三区四区的观看方式| 小日子的在线观看免费第8集| 久久夜夜操妹子| 成熟了的熟妇毛茸茸| 亚洲人成电影网站色www| 日本韩国免费观看| 激情小视频网站| 一区二区在线免费播放| 亚洲男人资源| 欧美1级2级| 一区二区成人在线观看| 午夜精品99久久免费| 亚洲精品自在在线观看| 男人亚洲天堂网| 潘金莲一级淫片aaaaaa播放1| 中文字幕 自拍偷拍| 舔足天天操天天射| 久久久久久国产精品mv| 成人影院在线观看| 国产毛片一区二区三区| 岛国片在线看| 伊人久久综合| 国产免费黄色网址| 国内精品免费一区二区三区| 久久女同性恋中文字幕| 成人av动漫在线| 影音先锋一区| 麻豆视频在线观看免费网站黄| 欧洲精品国产| 欧美三级免费观看| 国产精品久久久一本精品| 国产综合视频在线| 亚洲品质视频自拍网| 99视频免费| 亚洲男人资源| 五月天亚洲一区| 中日韩免费毛片| 日本网址在线观看| 91香蕉一区二区三区在线观看| av先锋下载| 91精品久久香蕉国产线看观看| 波多野结衣av无码| 性做久久久久久久久久| 樱花草国产18久久久久| 免费在线日本| 国产午夜精品久久| 91国产美女在线观看| 欧美日韩爆操| 久久久久久久久久91| 精品蜜桃在线看| 91网站免费观看| 国产69精品久久久久9| 最近97中文超碰在线| 电影天堂久久| 亚洲精品一区二区三区不卡| 欧洲成人午夜免费大片| 久久综合伊人77777麻豆最新章节| 又黄又爽在线观看| 97人人模人人爽人人少妇| 一菊综合网成人综合网| 日韩一级片大全| 欧美精品高清| 国产在线中文字幕| 亚洲主播在线观看| 美女免费久久| 国产在线一区二区三区四区| 中文字幕亚洲无线码在线一区| 亚洲国产精品久久久久婷蜜芽| 91|九色|视频| 国产在线视频欧美一区二区三区| 国产特级淫片高清视频| 九九九久久久久| 日韩精品久久久久久久软件91| 黄色大秀av大片| av激情在线观看| 成人精品免费在线观看| 超碰成人在线播放| 精品国产一区二区三区麻豆免费观看完整版| 成人黄色免费电影| 日韩一中文字幕| 亚洲欧美在线网| 奇米精品一区二区三区四区| 亚洲午夜网未来影院| 欧美日韩精品综合在线| 亚洲欧美另类小说| 日本动漫同人动漫在线观看| 91免费国产视频网站| 日韩欧美一级精品久久| 官网99热精品| 香蕉av一区二区| 欧美亚洲日本在线观看| 波多野结衣在线观看一区| **女人18毛片一区二区| 91一区二区三区在线观看| 可以免费看不卡的av网站| 国产精品永久免费| 久久国产欧美| 91欧美在线视频| 欧美日韩亚洲视频| 一级二级黄色片| 欧美a级一区二区| 男人天堂免费视频| 成人av在线播放网址| 国产精品伦一区二区| 日韩欧美国产wwwww| 免费在线观看黄视频| 美国三级日本三级久久99| 亚洲视频欧美在线| 免费在线观看av的网站| 欧美日韩国产精品一区二区亚洲| 三级小说一区| 91精品一区二区三区在线观看| 国产在线观看免费视频今夜| 九九免费精品视频在线观看| 久久久久成人精品无码中文字幕| 影音先锋在线影院| 色老综合老女人久久久| 一本色道久久88亚洲综合88| 1769视频在线播放免费观看| 美女黄色一级视频| 精品国产麻豆| 精品国产99国产精品| 亚洲欧美精品中文字幕在线| 老司机99精品99| 黄瓜视频污在线观看| 加勒比久久高清| 91传媒视频免费| 男人天堂综合| 亚洲成人性视频| 亚洲一区二区三区乱码| 成人在线视频中文字幕| 国产精品久久久久av免费| 五月激激激综合网色播| 粉嫩av免费一区二区三区| 日本一区福利在线| 成人免费的视频| 亚洲国产91精品在线观看| 久久精品综合一区| 精品电影一区| 99热99在线| 中文字幕av高清| av免费网站在线| 免费在线欧美黄色| 欧美国产日韩在线播放| 亚洲一级av无码毛片精品| 日本电影在线观看网站| 日本美女高潮视频| 三上悠亚亚洲一区| 亚洲视频一起| 日韩欧美激情一区二区| 国产极品美女高潮无套久久久| 欧美日韩在线精品一区二区三区激情| 五月综合激情在线| 都市激情亚洲| 网址你懂得在线观看| 18禁免费无码无遮挡不卡网站| 欧美高清免费| 影音先锋日韩| 亚洲欧美制服另类日韩| 8x海外华人永久免费日韩内陆视频| 亚洲av无码国产综合专区| 韩国av一区二区三区在线观看| 欧美熟妇交换久久久久久分类| 久草精品在线观看| 日韩欧美亚洲另类制服综合在线| 91国产美女在线观看| 欧洲不卡视频| 热草久综合在线| 亚洲欧洲99久久| 国产一级做a爱片久久毛片a| julia一区二区中文久久94| 国产黄在线播放| 欧美成人免费全部网站| 国产稀缺真实呦乱在线| 自拍偷拍亚洲在线| 美女搞黄视频在线观看| 中文字幕免费一区二区| 亚洲制服欧美另类| 精品亚洲免费视频| 国产精品综合久久久久久| 亚洲成人av| 亚洲精品午夜国产va久久成人| 亚洲综合日韩中文字幕v在线| 成人免费观看毛片| 久久久久久亚洲精品不卡4k岛国| 欧美黄色片免费观看| 男人的天堂一区二区| 网站在线观看你懂的| se在线视频| 天天干天天操av| 天天综合av| 国产精品久久久久久久浪潮网站| 欧美福利在线播放| 欧美日韩亚洲另类| 国产精品18hdxxxⅹ在线| 丰满的少妇愉情hd高清果冻传媒| 神马午夜伦理影院| 天天干天天色天天爽| 国产日产精品一区二区三区四区| 日韩免费视频一区| 久久免费电影| 18aaaa精品欧美大片h| 日本成片免费高清| 亚洲三区欧美一区国产二区| 日韩不卡的av| 亚洲精品中文字幕女同| 国产伦理吴梦梦伦理| 人妻在线日韩免费视频| 99久久久国产精品| 国产美女撒尿一区二区| 亚洲精品网站在线| 国内精品久久久久久不卡影院| 中文字幕视频观看| 人妻少妇精品无码专区| 成人免费区一区二区三区| 亚洲欧美日韩国产成人综合一二三区| 午夜精品一区二区三区在线观看| 欧美大胆性生话| 91久久大香伊蕉在人线| 久草视频在线看| 欧美另类中文字幕| 最近中文字幕免费观看| 欧美freesex| 中国极品少妇videossexhd| 亚洲精品国产suv一区| 欧美黑人乱大交| 8av国产精品爽爽ⅴa在线观看| 亚洲午夜天堂| 成人欧美一区二区三区黑人孕妇| 一区在线观看视频| 亚洲精品第一区二区三区| 国产精品久久久久久妇女6080| 曰本三级在线| 亚洲国产高清一区二区三区| 亚洲国产91视频| 中国日韩欧美久久久久久久久| 秋霞欧美一区二区三区视频免费| 91精品国产乱码久久久| 日韩欧美国产一区二区在线播放| 奇米777欧美一区二区| 久草国产精品视频| 99久久精品免费看国产小宝寻花| 久久综合九色| 日韩激情综合| 香港久久久电影| 美日韩一区二区三区| 欧美影院在线播放| 国产性色av一区二区| 日韩三级久久久| 青青草激情视频| 国产尤物视频在线| 国产精品久久久久久亚洲色| 久久久久欧美| 国产 日韩 欧美 精品| 日韩国产一区二区三区| 99久久久久久久久久| 一区二区三区视频免费看| bl视频在线免费观看| 欧美伦理片在线观看| 羞羞视频在线免费国产| 国产在线视频一区二区三区| 日本中文字幕免费在线观看| 精品国产a一区二区三区v免费| 日韩激情av在线免费观看| 97视频在线观看成人| 国产18无套直看片| 99国产精品久久久久久久久久久| 国产原创popny丨九色| 翔田千里精品久久一区二| 最新69国产成人精品视频免费| 欧美人与性动交xxⅹxx| 国产成人高清激情视频在线观看| 奇米777欧美一区二区| 久久久久久9| 国产91丝袜在线播放| 欧美女人交a| 丝袜理论片在线观看| 亚洲一区中文| 国产女同在线观看| 成人涩涩视频| 蜜桃精品在线| 午夜精品久久久久久久99樱桃| 亚洲人成高清| 亚洲av无码一区二区三区dv| аⅴ成人天堂中文在线| 久久99精品波多结衣一区| 婷婷成人激情在线网| 九九热青青草| 亚洲国产成人二区| 亚洲精品福利免费在线观看| 国产精品999视频| 最好看的中文字幕久久| 性感美女一级片| www.国产欧美| 久久成人精品| 国产精品久久无码| 日本伦理一区二区| 国产韩日精品| 精品欧美不卡一区二区在线观看| 国产亚洲精品久久777777| 日韩欧美一区二区一幕| 国产黄片一区二区三区| 午夜精彩视频| 久久精品视频国产| 青青国产在线观看| 欧美日韩精品在线观看| 免费一级特黄录像| 久久午夜无码鲁丝片午夜精品| 午夜欧美一区二区三区免费观看| 国产一级久久久久毛片精品| 国内精品一区二区| 888av在线视频| 高清在线视频日韩欧美| 午夜精彩视频| 人妻少妇被粗大爽9797pw| 99久久激情视频| 午夜剧场成人观在线视频免费观看| 亚洲精品蜜桃久久久久久| 久操视频在线观看免费| 国产精品日韩在线一区| 欧美午夜网站| 国产欧美精品一二三| 天天色天天综合网|