成人性生交大片免费看视频r_亚洲综合极品香蕉久久网_在线视频免费观看一区_亚洲精品亚洲人成人网在线播放_国产精品毛片av_久久久久国产精品www_亚洲国产一区二区三区在线播_日韩一区二区三区四区区区_亚洲精品国产无套在线观_国产免费www

主頁 > 知識庫 > Python實現(xiàn)層次分析法及自調節(jié)層次分析法的示例

Python實現(xiàn)層次分析法及自調節(jié)層次分析法的示例

熱門標簽:南京銷售外呼系統(tǒng)軟件 地圖標注微信發(fā)送位置不顯示 蓋州市地圖標注 315電話機器人廣告 浙江電銷卡外呼系統(tǒng)好用嗎 上海機器人外呼系統(tǒng)哪家好 地圖制圖標注位置改變是移位嗎 房產(chǎn)電銷外呼系統(tǒng) 地圖標注的意義點

假設我們遇到如下問題:
①對于M個方案,每個方案有N個屬性,在已知各個方案每個屬性值任意兩個屬性的重要程度的前提下,如何選擇最優(yōu)的方案?
②對于一個層級結構,在已知各底層指標相互之間的重要程度下,如何確定各底層指標對最高級指標的權值?
… …
此時,便可用層次分析法將我們的主觀想法——“誰比誰重要”轉換為客觀度量——“權值”

層次分析法

層次分析法的基本思想是將復雜問題分為若干層次和若干因素,在同一層次的各要素之間簡單地進行比較判斷和計算,并評估每層評價指標對上一層評價指標的重要程度,確定因素權重,從而為選擇最優(yōu)方案提出依據(jù)。步驟如下:

(1)根據(jù)自己體系中的關聯(lián)及隸屬關系構建有層次的結構模型,一般分為三層,分別為最高層、中間層和最低層。

(2)構造判斷矩陣

假設該層有n個評價指標u1, u2, …, un,設cij為ui相對于uj的重要程度,根據(jù)公式列出的1-9標度法,判斷兩兩評價指標之間的重要性。


根據(jù)比較得出判斷矩陣:
C=(cij)n*n其屬性為cij>0, cji=1/cij,cii=1

(3)層次單排序:從下往上,對于每一層的每個判斷矩陣,計算權向量和一致性檢驗。
計算矩陣C的最大特征根λmax及對應的特征向量(P1,P2,…, Pn)

一致性指標定義為:

CI(Consistency Ratio)稱為一致性比例。CI=0時,具有完全一致性;CI接近于0,具有滿意的一致性;CI越大,不一致性越嚴重。

一致性比率定義為:

其中RI稱為隨機性指標,參照表如下:


只有當CR0.1,則認為該判斷矩陣通過了一致性檢驗,即該矩陣自相矛盾產(chǎn)生的誤差可忽略。將矩陣C最大特征根對應的特征向量元素作歸一化處理,即可得到對應的權重集(C1,C2,…,Cn)。

(4)層次總排序

從上往下,依次計算每一層各指標對最上層指標的權值,以及每一層的綜合一致性比率CR。

自調節(jié)層次分析法——趙中奇

由于層次分析法選用1-9標度構建判斷矩陣,而大部分時候我們自己也不能很好度量重要性的程度,故趙中奇提出用-1,0,1三標度來構建判斷矩陣。同時,自動調整判斷矩陣,消除前后時刻主觀比較重要性時的矛盾現(xiàn)象,即讓矩陣變?yōu)橐恢滦跃仃嚕–R=0)。構建并調整判斷矩陣以及算權值向量的步驟如下:

(1)初始化m=1
a、確定比較矩陣C=(cij)n*n的第m行元素


b、劃分指標集合Dm={j|j=m+1,…,n}為
Hm={j|cmj=-1,j∈Dm}、Mm ={j|cmj=0,j∈Dm}與Lm={j|cmj=1,j∈Dm}

并構造集合為,其中×表示集合的笛卡爾積


c、若DLm、DMm、DHm全為空集,轉d,否則令:


d、若m=n-1,轉第二步,否則令m=m+1,轉回a

(2)求比較矩陣C


(3)求B=(bij)n*n,其中


(4)求A=(aij)n*n的特征向量,作為各評價指標的相對權重值,其中:

實例分析

由于網(wǎng)上找到的代碼大多只能算三層的體系,而且沒有趙中奇論文中的自調節(jié)層次分析法代碼。因此,自己寫了一個可以計算超過3層的層次分析法和自調節(jié)層次分析法代碼!

構建如下4層體系

層次分析法得到的權值

判斷矩陣就不列出來了了,可以在代碼里找到,得到第四層對A的權值條形圖如下:

自調節(jié)層次分析法得到的權值

自調節(jié)層次分析法對高階判斷矩陣更有優(yōu)勢,而算低階判斷矩陣時的結果和層次分析法差不多。

代碼

代碼包括了層次分析法與自調節(jié)層次分析法的實例,運行的時候注釋掉其中一個就行!

"""
Created on Tue Jan 26 10:12:30 2021
自適應層數(shù)的層次分析法求權值
@author: lw
"""

import numpy as np
import itertools
import matplotlib.pyplot as plt

#自適應層數(shù)的層次分析法
class AHP():
    '''
    注意:python中l(wèi)ist與array運算不一樣,嚴格按照格式輸入!
    本層次分析法每個判斷矩陣不得超過9階,各判斷矩陣必須是正互反矩陣
    FA_mx:下一層對上一層的判斷矩陣集(包含多個三維數(shù)組,默認從目標層向方案層依次輸入判斷矩陣。同層的判斷矩陣按順序排列,且上層指標不共用下層指標)
    string:默認為'norm'(經(jīng)典的層次分析法,需輸入9標度判斷矩陣),若為'auto'(自調節(jié)層次分析法,需輸入3標度判斷矩陣)
    '''
    
    #初始化函數(shù)
    def __init__(self,FA_mx,string='norm'):
        self.RI=np.array([0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49])   #平均隨機一致性指標
        if string=='norm':
            self.FA_mx=FA_mx           #所有層級的判斷矩陣
        elif string=='auto':
            self.FA_mx=[]
            for i in range(len(FA_mx)):
                  temp=[] 
                  for j in range(len(FA_mx[i])):
                      temp.append(self.preprocess(FA_mx[i][j]))
                  self.FA_mx.append(temp)     #自調節(jié)層次分析法預處理后的所有層級的判斷矩陣
        self.layer_num=len(FA_mx)   #層級數(shù)目
        self.w=[]                  #所有層級的權值向量
        self.CR=[]                 #所有層級的單排序一致性比例
        self.CI=[]                 #所有層級下每個矩陣的一致性指標
        self.RI_all=[]              #所有層級下每個矩陣的平均隨機一致性指標
        self.CR_all=[]             #所有層級的總排序一致性比例
        self.w_all=[]              #所有層級指標對目標的權值
        
        
    #輸入單個矩陣算權值并一致性檢驗(特征根法精確求解)
    def count_w(self,mx):
        n=mx.shape[0]
        eig_value, eigen_vectors=np.linalg.eig(mx)
        maxeig=np.max(eig_value)         #最大特征值
        maxindex=np.argmax(eig_value)    #最大特征值對應的特征向量
        eig_w=eigen_vectors[:,maxindex]/sum(eigen_vectors[:,maxindex])         #權值向量
        CI=(maxeig-n)/(n-1)
        RI=self.RI[n-1]
        if(n=2 and CI==0):
                CR=0.0
        else:
            CR=CI/RI
        if(CR0.1):
            return CI,RI,CR,list(eig_w.T)
        else:
            print('該%d階矩陣一致性檢驗不通過,CR為%.3f'%(n,CR))
            return -1.0,-1.0,-1.0,-1.0
    
    #計算單層的所有權值與CR
    def onelayer_up(self,onelayer_mx,index):
        num=len(onelayer_mx)           #該層矩陣個數(shù)
        CI_temp=[]
        RI_temp=[]
        CR_temp=[]
        w_temp=[]
        for i in range(num):
            CI,RI,CR,eig_w=self.count_w(onelayer_mx[i])
            if(CR>0.1):
                print('第%d層的第%d個矩陣未通過一致性檢驗'%(index,i+1))
                return
            CI_temp.append(CI)
            RI_temp.append(RI)
            CR_temp.append(CR)
            w_temp.append(eig_w)
        self.CI.append(CI_temp)
        self.RI_all.append(RI_temp)
        self.CR.append(CR_temp)
        self.w.append(w_temp)
        
    #計算單層的總排序及該層總的一致性比例
    def alllayer_down(self):
        self.CR_all.append(self.CR[self.layer_num-1])
        self.w_all.append(self.w[self.layer_num-1])
        for i in range(self.layer_num-2,-1,-1):
            if(i==self.layer_num-2):
                temp=sum(self.w[self.layer_num-1],[])         #列表降維,扁平化處理,取上一層的權值向量
            CR_temp=[]
            w_temp=[]
            CR=sum(np.array(self.CI[i])*np.array(temp))/sum(np.array(self.RI_all[i])*np.array(temp))
            if(CR>0.1):
                print('第%d層的總排序未通過一致性檢驗'%(self.layer_num-i))
                return
            for j in range(len(self.w[i])):
                shu=temp[j]
                w_temp.append(list(shu*np.array(self.w[i][j])))
            temp=sum(w_temp,[])        #列表降維,扁平化處理,取上一層的總排序權值向量
            CR_temp.append(CR)
            self.CR_all.append(CR_temp)
            self.w_all.append(w_temp)
        return
        
        
        
    #計算所有層的權值與CR,層次總排序
    def run(self):
        for i in range(self.layer_num,0,-1):
            self.onelayer_up(self.FA_mx[i-1],i)
        self.alllayer_down()
        return
    
    
    #自調節(jié)層次分析法的矩陣預處理過程
    def preprocess(self,mx):
        temp=np.array(mx)
        n=temp.shape[0]
        for i in range(n-1):
            H=[j for j,x in enumerate(temp[i]) if j>i and x==-1]
            M=[j for j,x in enumerate(temp[i]) if j>i and x==0]
            L=[j for j,x in enumerate(temp[i]) if j>i and x==1]
            DL=sum([[i for i in itertools.product(H,M)],[i for i in itertools.product(H,L)],[i for i in itertools.product(M,L)]],[])
            DM=[i for i in itertools.product(M,M)]
            DH=sum([[i for i in itertools.product(L,H)],[i for i in itertools.product(M,H)],[i for i in itertools.product(L,M)]],[])
            if DL:
                for j in DL:
                   if(j[0]j[1] and ij[0]):
                       temp[int(j[0])][int(j[1])]=1
            if DM:
                for j in DM:
                   if(j[0]j[1] and ij[0]):
                       temp[int(j[0])][int(j[1])]=0
            if DH:
                for j in DH:
                   if(j[0]j[1] and ij[0]):
                       temp[int(j[0])][int(j[1])]=-1
        for i in range(n):
            for j in range(i+1,n):
                temp[j][i]=-temp[i][j]
        A=[]
        for i in range(n):
            atemp=[]
            for j in range(n):
                a0=0
                for k in range(n):
                    a0+=temp[i][k]+temp[k][j]
                atemp.append(np.exp(a0/n))
            A.append(atemp)
        return np.array(A)   
    
    
            

#%%測試函數(shù)
if __name__=='__main__' :
    '''
    # 層次分析法的經(jīng)典9標度矩陣
    goal=[]             #第一層的全部判斷矩陣
    goal.append(np.array([[1, 3],   
                [1/3 ,1]]))
    criteria1 = np.array([[1, 3],
                          [1/3,1]])
    criteria2=np.array([[1, 1,3],
                        [1,1,3],
                        [1/3,1/3,1]])
    c_all=[criteria1,criteria2]   #第二層的全部判斷矩陣
    sample1 = np.array([[1, 1], [1, 1]])
    sample2 = np.array([[1,1,1/3], [1,1,1/3],[3,3,1]])
    sample3 = np.array([[1, 1/3], [3, 1]])
    sample4 = np.array([[1,3,1], [1 / 3, 1, 1/3], [1,3, 1]])
    sample5=np.array([[1,3],[1/3 ,1]])
    sample_all=[sample1,sample2,sample3,sample4,sample5]  #第三層的全部判斷矩陣
    FA_mx=[goal,c_all,sample_all]
    A1=AHP(FA_mx)     #經(jīng)典層次分析法
    A1.run()
    a=A1.CR           #層次單排序的一致性比例(從下往上)
    b=A1.w            #層次單排序的權值(從下往上)
    c=A1.CR_all       #層次總排序的一致性比例(從上往下)
    d=A1.w_all        #層次總排序的權值(從上往下)
    e=sum(d[len(d)-1],[])       #底層指標對目標層的權值
    #可視化
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
    name=['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10','D11','D12']
    plt.figure()
    plt.bar(name,e)
    for i,j in enumerate(e):
        plt.text(i,j+0.005,'%.4f'%(np.abs(j)),ha='center',va='top')
    plt.title('底層指標對A的權值')
    plt.show()
    '''
    
    #自調節(jié)層次分析法的3標度矩陣(求在線體系的權值)
    goal=[]             #第一層的全部判斷矩陣
    goal.append(np.array([[0, 1],   
                [-1,0]]))
    criteria1 = np.array([[0, 1],
                          [-1,0]])
    criteria2=np.array([[0, 0,1],
                        [0,0,1],
                        [-1,-1,0]])
    c_all=[criteria1,criteria2]   #第二層的全部判斷矩陣
    sample1 = np.array([[0, 0], [0, 0]])
    sample2 = np.array([[0,0,-1], [0,0,-1],[1,1,0]])
    sample3 = np.array([[0, -1], [1, 0]])
    sample4 = np.array([[0,1,0], [-1, 0,-1], [0,1,0]])
    sample5=np.array([[0,1],[-1 ,0]])
    sample_all=[sample1,sample2,sample3,sample4,sample5]  #第三層的全部判斷矩陣
    FA_mx=[goal,c_all,sample_all]
    A1=AHP(FA_mx,'auto')     #經(jīng)典層次分析法
    A1.run()
    a=A1.CR           #層次單排序的一致性比例(從下往上)
    b=A1.w            #層次單排序的權值(從下往上)
    c=A1.CR_all       #層次總排序的一致性比例(從上往下)
    d=A1.w_all        #層次總排序的權值(從上往下)
    e=sum(d[len(d)-1],[])       #底層指標對目標層的權值
    #可視化
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
    name=['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10','D11','D12']
    plt.figure()
    plt.bar(name,e)
    for i,j in enumerate(e):
        plt.text(i,j+0.005,'%.4f'%(np.abs(j)),ha='center',va='top')
    plt.title('底層指標對A的權值')
    plt.show()

到此這篇關于Python實現(xiàn)層次分析法及自調節(jié)層次分析法的示例的文章就介紹到這了,更多相關Python 層次分析法及自調節(jié)層次分析法內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python實現(xiàn)AHP算法的方法實例(層次分析法)

標簽:臨汾 陽泉 日照 雙鴨山 貴州 赤峰 克拉瑪依 金華

巨人網(wǎng)絡通訊聲明:本文標題《Python實現(xiàn)層次分析法及自調節(jié)層次分析法的示例》,本文關鍵詞  Python,實現(xiàn),層次,分析法,;如發(fā)現(xiàn)本文內容存在版權問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《Python實現(xiàn)層次分析法及自調節(jié)層次分析法的示例》相關的同類信息!
  • 本頁收集關于Python實現(xiàn)層次分析法及自調節(jié)層次分析法的示例的相關信息資訊供網(wǎng)民參考!
  • 推薦文章
    国产精品无码一区二区三| 亚洲一区在线日韩在线深爱| 亚洲蜜桃视频| 亚洲欧美乱综合图片区小说区| 久久久久久久久久久久久久久久久久av| 天天综合五月天| 性欧美丰满熟妇xxxx性仙踪林| 情趣视频网站在线免费观看| 亚洲高潮无码久久| abab456成人免费网址| 精品国产乱码久久久久久浪潮| 91av一区二区三区| 波多野结衣中文字幕一区| 91成人天堂久久成人| 成人亚洲成人影院| 国语自产精品视频在线看8查询8| 日韩av在线免费观看| 亚洲一区在线视频观看| 国产成人免费电影| 在线视频精品一| 欧美 日韩 亚洲 一区| 视频精品一区二区| 91福利在线观看视频| 91香蕉国产视频| 亚洲日本电影在线| 美女黄色成人网| 国产精品99一区二区三| 国产精品久久久久久久精| av手机免费在线观看| 国模娜娜一区二区三区| 99久久精品国产色欲| 久久成人一区二区| 久久成人小视频| 亚洲国产成人精品女人久久| 呻吟揉丰满对白91乃国产区| www视频在线免费观看| 天堂va在线高清一区| 欧美精品18videosex性欧美| 日韩一区二区三区四区区区| 不卡一区二区在线| 一本久久a久久精品亚洲| 亚洲国产精品久久久久婷蜜芽| 91在线资源站| 亚洲奶水xxxx哺乳期| 99久久久久久久久| 永久免费不卡在线观看黄网站| 北条麻妃av高潮尖叫在线观看| 日韩综合小视频| 亚洲乱亚洲高清| 超碰超碰人人人人精品| 欧美性活一级视频| 成人亚洲一区二区一| a级在线观看| 国产在线视频精品视频免费看| 欧美伦理91i| 欧美色男人天堂| 91成人在线播放| 国产一区二区三区免费播放| 性高湖久久久久久久久aaaaa| 免费看污污网站| 亚洲综合激情六月婷婷在线观看| www日本在线观看| 欧美日韩亚洲一区二区三区| 国产乱在线观看完整版视频| 国产原创剧情av| 麻豆成人av在线| 成人性生交大片免费观看网站| 好吊视频在线观看| 久久久国产精品一区二区三区| 成年人在线看| 老牛精品亚洲成av人片| 天天骑天天干| 三区精品视频| www操com| 国产精品v日韩精品v欧美精品网站| 国产成人精品久久| 国产精品久久久久久久| 99久久精品99国产精品| 国产日韩一区二区在线| 国产精品拍拍拍| 国产真实乱人偷精品视频| jvid福利写真一区二区三区| 91看片一区| 亚洲午夜av在线| 国产精品视频第一页| 在线视频免费在线观看一区二区| 日韩中文字幕在线不卡| 精品无码人妻一区二区免费蜜桃| 国产精品v欧美精品v日本精品动漫| 午夜91在线| 韩国无码av片在线观看网站| 最近中文字幕一区二区三区| 日本精品一区二区三区四区的功能| 日本不卡一二三区黄网| 好吊视频一二三区| 中文字幕一区二区三中文字幕| 91福利在线观看视频| 丁香六月久久综合狠狠色| 91成人抖音| 91精品国产黑色瑜伽裤| 91在线视频官网| 亚洲第一精品久久忘忧草社区| 欧美乱熟臀69xxxxxx| 日本久久天堂| 亚洲第一偷拍| 六九午夜精品视频| 日本特级黄色大片| 麻豆国产在线播放| 久久精品这里都是精品| 菠萝菠萝蜜在线视频免费观看| 欧美色网一区| 国产女主播一区二区| 熟妇人妻无乱码中文字幕真矢织江| 国产日产精品一区二区三区四区的观看方式| 日韩三级影院| 在线国产精品网| 在线看的av网站| 国产精品三级电影| 波多野结衣在线观看一区| 色综合视频网站| 隔壁老王国产在线精品| 亚洲视频精品在线观看| 亚洲免费伊人电影| 日本黄色不卡视频| 国产欧美高清视频在线| 91日韩视频| 国产成人无码a区在线观看视频| 黄视频在线观看免费| 精品免费av一区二区三区| 国产成人亚洲综合a∨猫咪| 一区二区欧美精品| 99精品在线免费观看| 成人黄色av| 午夜影院在线看| 亚洲久久一区二区| 国产成人精品一区二三区在线观看| 秋霞欧美视频| 欧美 日韩 国产 在线| 日韩精品久久久久久久| 国产精品伦理久久久久久| 国产日产欧美一区二区视频| 亚洲影院天堂中文av色| 亚洲一级爰片777777| 欧美在线一二三四区| 吞精囗交69激情欧美| 国产人成视频在线观看| 国产精品一区二区三区乱码| 中文字幕精品一区日韩| 欧美日韩国产欧美日美国产精品| 天天插天天色| 亚洲国产精品无码av| 成人在线免费观看一区| 亚洲人成电影网站色…| 亚洲激情自拍| 999国产在线| 波多野结衣av一区二区全免费观看| 性感少妇一区| 成人国产综合| 欧美日韩国产综合新一区| 一卡二卡三卡亚洲| 日韩在线天堂| 911精品美国片911久久久| 日韩写真福利视频在线| 91精品欧美久久久久久动漫| 欧美丰满少妇xxxxx高潮对白| 亚洲xxxxxx| 欧美性受xxxx狂喷水| 丝袜a∨在线一区二区三区不卡| 亚洲精品视频网上网址在线观看| 性欧美videoshd高清| 国产精品一区2区3区| 精品国产福利在线| sm捆绑调教国产免费网站在线观看| 日韩高清不卡一区二区三区| 日本午夜精品理论片a级appf发布| 我的公把我弄高潮了视频| 欧美69xxxxx| 樱花影视一区二区| 国产精品二三区| 在线电影福利片| 欧美亚洲色图视频| 一本色道久久综合亚洲精品婷婷| 国产一级特黄a高潮片| 久久天天躁狠狠躁夜夜av| 国内精品久久久久国产盗摄免费观看完整版| 五月天婷婷影视| 国产经典自拍视频在线观看| 国产精品午夜在线| 亚洲午夜精品一区二区三区| 国产精品18久久久久久久久久久久| 日韩精品欧美成人高清一区二区| 一级黄色片网址| 成人激情开心网| 亚洲成人蜜桃| 日韩激情一区二区| 9色国产精品| 黄色一级a毛片| 欧美精品aⅴ在线视频| 一级黄色片在线免费观看| 波多野结衣中文字幕一区| 欧美日韩综合一区| 欧美日韩国产a| 久久一卡二卡| 欧美一区二区日韩| 欧美日韩调教| 亚洲国产精品一区二区第四页av| 91不卡在线观看| 中文字幕av一区中文字幕天堂| 日韩欧美国产高清| 国产高清视频一区| 欧美精品一区二区久久| 一区二区三区视频国产日韩| 最近最新中文字幕在线| 国产精品裸体一区二区三区| 91在线免费观看| 91香蕉国产在线观看软件| 少妇熟女视频一区二区三区| 国产精品久久AV无码| 免费成人性网站| se视频在线观看| 一本一道无码中文字幕精品热| 色欧美88888久久久久久影院| 野外性xxxxfreexxxxx欧美| 国产精品国产国产aⅴ| 欧美大黑帍在线播放| 欧美日高清视频| 91麻豆国产视频| 中文在线а天堂av| 九色自拍视频| 综合网插菊花| av网站在线播放| 欧洲杯足球赛直播| 国产精品宾馆在线精品酒店| 国产精品一区免费在线观看| 在线视频中文字幕久| 久久99精品久久久久久青青日本| 欧美凹凸一区二区三区视频| 国产91精品在线播放| 欧美一级视频免费| 国产精品久久久午夜夜伦鲁鲁| 国产香蕉视频在线| 九色综合日本| 日韩a在线观看| 中文字幕国产视频| 想看黄色一级片| 中文在线资源| 亚洲午夜精品久久久久久高潮| 超碰在线亚洲| 国内成+人亚洲| 亚洲毛片在线观看| 国产精品激情av电影在线观看| 亚洲成a人片77777精品| 99视频一区二区三区| 亚洲无吗在线| 综合网插菊花| 久久精品亚洲精品国产欧美kt∨| 可以在线看的av网站| 97caopron在线视频| 99久久夜色精品国产亚洲| 99视频免费观看蜜桃视频| yiren22亚洲综合伊人22| 欧美高清不卡在线| 亚洲激情女人| 日韩一级片一区二区| 无码播放一区二区三区| 日韩一级高清毛片| 亚洲欧美国产日韩中文字幕| 亚洲精品国产精品乱码不卡| 亚洲一区在线观| 男人的天堂av社区在线| 精品国产乱码久久久久久88av| 欧美黄色一区二区| 国产乱码精品一区二三赶尸艳谈| 国产一区二区三区在线| 国产三级国产精品| 久久综合九色综合欧美狠狠| 制服师生第一页| 国产777精品精品热热热一区二区| 超碰在线最新网址| 亚洲午夜精品一区| 欧美丰满片xxx777| 日韩免费一级片| 久久精品夜夜夜夜夜久久| canopen超线视频网线的应用| 不卡的看片网站| 色网站在线视频| 国产精品丝袜视频| 三上悠亚在线资源| 99se视频在线观看| 成人免费视屏| 欧美精品一区二区三区久久久竹菊| 亚洲日本中文字幕| 樱花草涩涩www在线播放| 久久精品一区二区三| xxxx欧美18另类的高清| 免费国产黄线在线观看视频| 国产少妇在线观看| xxww在线观看| 欧美一区二区精美| 欧美理论电影大全| 91久久国产精品| 女人av一区| 国产精品天干天干在观线| luxu259在线中文字幕| 在线观看国产网站| 国产一区二区欧美日韩| 亚洲欧美成人影院| 久久99热这里只有精品国产| 亚洲系列在线观看| 久章草在线视频| 日韩av三级在线观看| 深夜福利网站在线观看| 欧美人与动性xxxxbbbb| 国产亚洲欧美日韩精品一区二区三区| 日韩精品视频在线观看免费| 亚洲AV无码国产精品午夜字幕| 91在线云播放| 91国偷自产一区二区三区的观看方式| 亚洲欧美日韩一区成人| 久久九九热re6这里有精品| 超碰网在线观看| 337p粉嫩色噜噜噜大肥臀| 午夜激情福利在线| 亚洲美女毛片| 欧美不卡一区| 大胆欧美熟妇xx| 大胆av不用播放器在线播放| 91麻豆国产福利在线观看宅福利|