成人性生交大片免费看视频r_亚洲综合极品香蕉久久网_在线视频免费观看一区_亚洲精品亚洲人成人网在线播放_国产精品毛片av_久久久久国产精品www_亚洲国产一区二区三区在线播_日韩一区二区三区四区区区_亚洲精品国产无套在线观_国产免费www

主頁(yè) > 知識(shí)庫(kù) > opencv-python+yolov3實(shí)現(xiàn)目標(biāo)檢測(cè)

opencv-python+yolov3實(shí)現(xiàn)目標(biāo)檢測(cè)

熱門(mén)標(biāo)簽:聊城語(yǔ)音外呼系統(tǒng) ai電銷(xiāo)機(jī)器人的優(yōu)勢(shì) 海外網(wǎng)吧地圖標(biāo)注注冊(cè) 孝感營(yíng)銷(xiāo)電話機(jī)器人效果怎么樣 商家地圖標(biāo)注海報(bào) 打電話機(jī)器人營(yíng)銷(xiāo) 南陽(yáng)打電話機(jī)器人 地圖標(biāo)注自己和別人標(biāo)注區(qū)別 騰訊地圖標(biāo)注沒(méi)法顯示

因?yàn)樽罱娜蝿?wù)有用到目標(biāo)檢測(cè),所以昨天晚上、今天上午搞了一下,快速地了解了目標(biāo)檢測(cè)這一任務(wù),并且實(shí)現(xiàn)了使用opencv進(jìn)行目標(biāo)檢測(cè)。

網(wǎng)上資料挺亂的,感覺(jué)在搜資源上浪費(fèi)了我不少時(shí)間,所以我寫(xiě)這篇博客,把我這段時(shí)間了解到的東西整理起來(lái),供有緣的讀者參考學(xué)習(xí)。

目標(biāo)檢測(cè)概況

目標(biāo)檢測(cè)是?

目標(biāo)檢測(cè),粗略來(lái)說(shuō)就是:輸入圖片/視頻,經(jīng)過(guò)處理,得到:目標(biāo)的位置信息(比如左上角和右下角的坐標(biāo))、目標(biāo)的預(yù)測(cè)類(lèi)別、目標(biāo)的預(yù)測(cè)置信度(confidence)。

拿Faster R-CNN這個(gè)算法舉例:輸入一個(gè)batch(batch size也可以為1)的圖片或者視頻,網(wǎng)絡(luò)直接的outputs是這樣的:
[batchId, classId, confidence, left, top, right, bottom],batchId, classId, confidence, left, top, right, bottom都是標(biāo)量。
batchId表示這一個(gè)batch中,這張圖片的id(也即index),后四個(gè)標(biāo)量即目標(biāo)的位置信息:左上角像素點(diǎn)和右下角像素點(diǎn)的坐標(biāo)。

目標(biāo)檢測(cè)算法?

按照歷史脈絡(luò)來(lái)談:

手工特征提取算法,如VJ、HOG、DPM

R-CNN算法(2014),最早的基于深度學(xué)習(xí)的目標(biāo)檢測(cè)器之一,其結(jié)構(gòu)是兩級(jí)網(wǎng)絡(luò):1)首先需要諸如選擇性搜索之類(lèi)的算法來(lái)提出可能包含對(duì)象的候選邊界框;2)然后將這些區(qū)域傳遞到CNN算法進(jìn)行分類(lèi);

R-CNN算法存在的問(wèn)題是其仿真很慢,并且不是完整的端到端的目標(biāo)檢測(cè)器。

Fast R-CNN算法(2014末),對(duì)原始R-CNN進(jìn)行了相當(dāng)大的改進(jìn):提高準(zhǔn)確度,并減少執(zhí)行正向傳遞所花費(fèi)的時(shí)間。

但是,該模型仍然依賴(lài)于外部區(qū)域搜索算法。

faster R-CNN算法(2015),真正的端到端深度學(xué)習(xí)目標(biāo)檢測(cè)器。刪除了選擇性搜索的要求,而是依賴(lài)于

(1)完全卷積的區(qū)域提議網(wǎng)絡(luò)(RPN, Region Purpose Network),可以預(yù)測(cè)對(duì)象邊界框和“對(duì)象”分?jǐn)?shù)(量化它是一個(gè)區(qū)域的可能性的分?jǐn)?shù))。

(2)然后將RPN的輸出傳遞到R-CNN組件以進(jìn)行最終分類(lèi)和標(biāo)記。

R-CNN系列算法,都采取了two-stage策略。特點(diǎn)是:雖然檢測(cè)結(jié)果一般都非常準(zhǔn)確,但仿真速度非常慢,即使是在GPU上也僅獲得5 FPS。

one-stage方法有:yolo(2015)、SSD(2015末),以及在這兩個(gè)算法基礎(chǔ)上改進(jìn)的各論文提出的算法。這些算法的基本思路是:均勻地在圖片的不同位置進(jìn)行密集抽樣,抽樣時(shí)可以采用不同尺度和長(zhǎng)寬比,然后利用CNN提取特征后直接進(jìn)行分類(lèi)與回歸。

整個(gè)過(guò)程只需要一步,所以其優(yōu)勢(shì)是速度快,但是訓(xùn)練比較困難。

yolov3(2018)是yolo作者提出的第三個(gè)版本(之前還提過(guò)yolov2和它們的tinny版本,tinny版本經(jīng)過(guò)壓縮更快但是也降低了準(zhǔn)確率)。yolov3支持80類(lèi)物體的目標(biāo)檢測(cè),完整列表[戳這里]: https://github.com/pjreddie/darknet/blob/master/data/coco.names

時(shí)間線:

yolov3模型簡(jiǎn)介

性能介紹

首先,套路,yolov3很強(qiáng)大(不強(qiáng)大我用它干啥呢)。速度上,它比 R-CNN 快 1000 倍,比 Fast R-CNN 快 100 倍。檢測(cè)準(zhǔn)確率上,它不是最準(zhǔn)的:YOLOv3-608比 DSSD 更高,接近 FPN。但是它的速度不到后二者的1/3。

從下圖也可以看出:

架構(gòu)介紹

可以看出,他是一系列卷積、殘差、上采樣組成的。特點(diǎn)在于,它將預(yù)測(cè)分在三個(gè)尺度(Scale)進(jìn)行(見(jiàn)圖中三個(gè)彩色框),也在三個(gè)scale分別輸出。

opencv-python實(shí)現(xiàn)

why opencv?

opencv( 3.4.2+版本)的dnn(Deep Neural Network-DNN)模塊封裝了Darknet框架,這個(gè)框架是

自己寫(xiě)的,它由封裝了yolo算法。因?yàn)檫@么一層關(guān)系,我們可以使用opencv方便地使用yolo的各個(gè)版本,而且有數(shù)據(jù)(見(jiàn)下)證明OpenCV的DNN模塊在 CPU的實(shí)現(xiàn)速度比使用 OpenML 的 Darknet 快9倍。

正文

我會(huì)先結(jié)合腳本片段講解,再給出該腳本的完整代碼,講解。

引庫(kù)

import numpy as np
import cv2 as cv
import os
import time

參數(shù):

yolo_dir = '/home/hessesummer/github/NTS-Net-my/yolov3'  # YOLO文件路徑
weightsPath = os.path.join(yolo_dir, 'yolov3.weights')  # 權(quán)重文件
configPath = os.path.join(yolo_dir, 'yolov3.cfg')  # 配置文件
labelsPath = os.path.join(yolo_dir, 'coco.names')  # label名稱(chēng)
imgPath = os.path.join(yolo_dir, 'test.jpg')  # 測(cè)試圖像
CONFIDENCE = 0.5  # 過(guò)濾弱檢測(cè)的最小概率
THRESHOLD = 0.4  # 非最大值抑制閾值

權(quán)重文件、配置文件、label名稱(chēng)的下載地址:

wget https://pjreddie.com/media/files/yolov3.weights
wget https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg
wget https://github.com/pjreddie/darknet/blob/master/data/coco.names

簡(jiǎn)單來(lái)說(shuō):

過(guò)濾弱檢測(cè)的最小概率:置信度小于這個(gè)值的輸出都不要了;
非最大值抑制閾值:允許框框重疊的程度(多框框檢測(cè)同一個(gè)物體),供下面的NMS算法使用,該算法會(huì)根據(jù)該值將有重疊的框框合并。值為0時(shí),不允許框框重疊。默認(rèn)值是0.3。

詳細(xì)來(lái)說(shuō):

我沒(méi)查。您自己感興趣再了解吧。

重頭戲1:

# 加載網(wǎng)絡(luò)、配置權(quán)重
net = cv.dnn.readNetFromDarknet(configPath, weightsPath)  ## 利用下載的文件
# print("[INFO] loading YOLO from disk...") ## 可以打印下信息

# 加載圖片、轉(zhuǎn)為blob格式、送入網(wǎng)絡(luò)輸入層
img = cv.imread(imgPath)
blobImg = cv.dnn.blobFromImage(img, 1.0/255.0, (416, 416), None, True, False)  ## net需要的輸入是blob格式的,用blobFromImage這個(gè)函數(shù)來(lái)轉(zhuǎn)格式
net.setInput(blobImg)  ## 調(diào)用setInput函數(shù)將圖片送入輸入層

# 獲取網(wǎng)絡(luò)輸出層信息(所有輸出層的名字),設(shè)定并前向傳播
outInfo = net.getUnconnectedOutLayersNames()  ## 前面的yolov3架構(gòu)也講了,yolo在每個(gè)scale都有輸出,outInfo是每個(gè)scale的名字信息,供net.forward使用
# start = time.time()
layerOutputs = net.forward(outInfo)  # 得到各個(gè)輸出層的、各個(gè)檢測(cè)框等信息,是二維結(jié)構(gòu)。
# end = time.time()
# print("[INFO] YOLO took {:.6f} seconds".format(end - start)) ## 可以打印下信息

layerOutputs是二維結(jié)構(gòu),第0維代表哪個(gè)輸出層,第1維代表各個(gè)檢測(cè)框。

其他的我都在注釋里講解了。

重頭戲2:

# 拿到圖片尺寸
(H, W) = img.shape[:2]

供下面使用:

# 過(guò)濾layerOutputs
# layerOutputs的第1維的元素內(nèi)容: [center_x, center_y, width, height, objectness, N-class score data]
# 過(guò)濾后的結(jié)果放入:
boxes = [] # 所有邊界框(各層結(jié)果放一起)
confidences = [] # 所有置信度
classIDs = [] # 所有分類(lèi)ID

# # 1)過(guò)濾掉置信度低的框框
for out in layerOutputs:  # 各個(gè)輸出層
    for detection in out:  # 各個(gè)框框
        # 拿到置信度
        scores = detection[5:]  # 各個(gè)類(lèi)別的置信度
        classID = np.argmax(scores)  # 最高置信度的id即為分類(lèi)id
        confidence = scores[classID]  # 拿到置信度

        # 根據(jù)置信度篩查
        if confidence > CONFIDENCE:
            box = detection[0:4] * np.array([W, H, W, H])  # 將邊界框放會(huì)圖片尺寸
            (centerX, centerY, width, height) = box.astype("int")
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

# # 2)應(yīng)用非最大值抑制(non-maxima suppression,nms)進(jìn)一步篩掉
idxs = cv.dnn.NMSBoxes(boxes, confidences, CONFIDENCE, THRESHOLD) # boxes中,保留的box的索引index存入idxs

這里的NMS算法就是前面提到的NMS算法。

應(yīng)用檢測(cè)結(jié)果,這里是畫(huà)出框框。

# 得到labels列表
with open(labelsPath, 'rt') as f:
    labels = f.read().rstrip('\n').split('\n')

供下面使用:

# 應(yīng)用檢測(cè)結(jié)果
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")  # 框框顯示顏色,每一類(lèi)有不同的顏色,每種顏色都是由RGB三個(gè)值組成的,所以size為(len(labels), 3)
if len(idxs) > 0:
    for i in idxs.flatten(): # indxs是二維的,第0維是輸出層,所以這里把它展平成1維
        (x, y) = (boxes[i][0], boxes[i][1])
        (w, h) = (boxes[i][2], boxes[i][3])

        color = [int(c) for c in COLORS[classIDs[i]]]
        cv.rectangle(img, (x, y), (x+w, y+h), color, 2)  # 線條粗細(xì)為2px
        text = "{}: {:.4f}".format(labels[classIDs[i]], confidences[i])
        cv.putText(img, text, (x, y-5), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)  # cv.FONT_HERSHEY_SIMPLEX字體風(fēng)格、0.5字體大小、粗細(xì)2px
cv.imshow('目標(biāo)檢測(cè)結(jié)果', img)
cv.waitKey(0)

第一部分講解結(jié)束,下面放完整代碼:

import numpy as np
import cv2 as cv
import os
import time

yolo_dir = '/home/hessesummer/github/NTS-Net-my/yolov3'  # YOLO文件路徑
weightsPath = os.path.join(yolo_dir, 'yolov3.weights')  # 權(quán)重文件
configPath = os.path.join(yolo_dir, 'yolov3.cfg')  # 配置文件
labelsPath = os.path.join(yolo_dir, 'coco.names')  # label名稱(chēng)
imgPath = os.path.join(yolo_dir, 'test.jpg')  # 測(cè)試圖像
CONFIDENCE = 0.5  # 過(guò)濾弱檢測(cè)的最小概率
THRESHOLD = 0.4  # 非最大值抑制閾值

# 加載網(wǎng)絡(luò)、配置權(quán)重
net = cv.dnn.readNetFromDarknet(configPath, weightsPath)  # #  利用下載的文件
print("[INFO] loading YOLO from disk...")  # # 可以打印下信息

# 加載圖片、轉(zhuǎn)為blob格式、送入網(wǎng)絡(luò)輸入層
img = cv.imread(imgPath)
blobImg = cv.dnn.blobFromImage(img, 1.0/255.0, (416, 416), None, True, False)   # # net需要的輸入是blob格式的,用blobFromImage這個(gè)函數(shù)來(lái)轉(zhuǎn)格式
net.setInput(blobImg)  # # 調(diào)用setInput函數(shù)將圖片送入輸入層

# 獲取網(wǎng)絡(luò)輸出層信息(所有輸出層的名字),設(shè)定并前向傳播
outInfo = net.getUnconnectedOutLayersNames()  # # 前面的yolov3架構(gòu)也講了,yolo在每個(gè)scale都有輸出,outInfo是每個(gè)scale的名字信息,供net.forward使用
start = time.time()
layerOutputs = net.forward(outInfo)  # 得到各個(gè)輸出層的、各個(gè)檢測(cè)框等信息,是二維結(jié)構(gòu)。
end = time.time()
print("[INFO] YOLO took {:.6f} seconds".format(end - start))  # # 可以打印下信息

# 拿到圖片尺寸
(H, W) = img.shape[:2]
# 過(guò)濾layerOutputs
# layerOutputs的第1維的元素內(nèi)容: [center_x, center_y, width, height, objectness, N-class score data]
# 過(guò)濾后的結(jié)果放入:
boxes = [] # 所有邊界框(各層結(jié)果放一起)
confidences = [] # 所有置信度
classIDs = [] # 所有分類(lèi)ID

# # 1)過(guò)濾掉置信度低的框框
for out in layerOutputs:  # 各個(gè)輸出層
    for detection in out:  # 各個(gè)框框
        # 拿到置信度
        scores = detection[5:]  # 各個(gè)類(lèi)別的置信度
        classID = np.argmax(scores)  # 最高置信度的id即為分類(lèi)id
        confidence = scores[classID]  # 拿到置信度

        # 根據(jù)置信度篩查
        if confidence > CONFIDENCE:
            box = detection[0:4] * np.array([W, H, W, H])  # 將邊界框放會(huì)圖片尺寸
            (centerX, centerY, width, height) = box.astype("int")
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

# # 2)應(yīng)用非最大值抑制(non-maxima suppression,nms)進(jìn)一步篩掉
idxs = cv.dnn.NMSBoxes(boxes, confidences, CONFIDENCE, THRESHOLD) # boxes中,保留的box的索引index存入idxs
# 得到labels列表
with open(labelsPath, 'rt') as f:
    labels = f.read().rstrip('\n').split('\n')
# 應(yīng)用檢測(cè)結(jié)果
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")  # 框框顯示顏色,每一類(lèi)有不同的顏色,每種顏色都是由RGB三個(gè)值組成的,所以size為(len(labels), 3)
if len(idxs) > 0:
    for i in idxs.flatten():  # indxs是二維的,第0維是輸出層,所以這里把它展平成1維
        (x, y) = (boxes[i][0], boxes[i][1])
        (w, h) = (boxes[i][2], boxes[i][3])

        color = [int(c) for c in COLORS[classIDs[i]]]
        cv.rectangle(img, (x, y), (x+w, y+h), color, 2)  # 線條粗細(xì)為2px
        text = "{}: {:.4f}".format(labels[classIDs[i]], confidences[i])
        cv.putText(img, text, (x, y-5), cv.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)  # cv.FONT_HERSHEY_SIMPLEX字體風(fēng)格、0.5字體大小、粗細(xì)2px
cv.imshow('detected image', img)
cv.waitKey(0)

結(jié)果:

到此這篇關(guān)于opencv-python+yolov3實(shí)現(xiàn)目標(biāo)檢測(cè)的文章就介紹到這了,更多相關(guān)opencv yolov3目標(biāo)檢測(cè)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Python Opencv實(shí)現(xiàn)單目標(biāo)檢測(cè)的示例代碼
  • Python 使用Opencv實(shí)現(xiàn)目標(biāo)檢測(cè)與識(shí)別的示例代碼
  • OpenCV+python實(shí)現(xiàn)實(shí)時(shí)目標(biāo)檢測(cè)功能
  • python opencv根據(jù)顏色進(jìn)行目標(biāo)檢測(cè)的方法示例
  • Python Opencv任意形狀目標(biāo)檢測(cè)并繪制框圖
  • Python+OpenCV目標(biāo)跟蹤實(shí)現(xiàn)基本的運(yùn)動(dòng)檢測(cè)
  • python opencv檢測(cè)目標(biāo)顏色的實(shí)例講解

標(biāo)簽:六盤(pán)水 揚(yáng)州 牡丹江 楊凌 撫州 聊城 南寧 迪慶

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《opencv-python+yolov3實(shí)現(xiàn)目標(biāo)檢測(cè)》,本文關(guān)鍵詞  opencv-python+yolov3,實(shí)現(xiàn),目標(biāo),;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《opencv-python+yolov3實(shí)現(xiàn)目標(biāo)檢測(cè)》相關(guān)的同類(lèi)信息!
  • 本頁(yè)收集關(guān)于opencv-python+yolov3實(shí)現(xiàn)目標(biāo)檢測(cè)的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    青青草观看免费视频在线| 国产一二三区在线| 国产精品草莓在线免费观看| 大黑人交xxx极品hd| av在线电影网站| 亚洲精品在线观看www| 国产精品日韩精品在线播放| 刘玥91精选国产在线观看| 北条麻妃高清一区| 国产精品sss在线观看av| 精品国产免费人成网站| 韩国专线一区二三区| 成人性生交大免费看| 激情网站在线观看| 国产做受高潮漫动| 一区二区三区四区视频免费观看| 日本成人午夜影院| 精品在线一区二区三区| a视频在线观看免费| 久久久999国产| 天堂网在线资源| 欧美 国产 小说 另类| 18啪啪污污免费网站| 激情视频网址| 欧美电影院免费观看| 国产三级做爰在线观看| 日本性生活一级片| 久久精品无码专区| 在线视频国产三级| 国产性一级片| 亚洲欧洲一区二区三区在线观看| 亚洲人成无码www久久久| 1000部精品久久久久久久久| 国产91精品网站| 久久久亚洲综合网站| 久久久精品免费视频| 夜夜嗨aⅴ一区二区三区| 一区二区影视| 国产剧情一区二区在线观看| av福利导福航大全在线播放| 欧美一级免费观看| gogogo免费视频观看亚洲一| 国产精品电影院| 少妇人妻精品一区二区三区| 成人精品一区二区三区中文字幕| 色婷婷av一区二区三区之一色屋| 久久这里只有精品免费| 国产精品日韩精品在线播放| 亚洲一卡二卡在线观看| www.黄色在线| 国产亚洲成av人片在线观看| 免费看国产精品一二区视频| 国产网站一区二区三区| 国产免费黄色网址| 日韩视频在线免费看| 麻豆传媒免费在线观看| 中文字幕在线不卡视频| 国产精品高潮粉嫩av| 99热这里只有精品免费| 神马午夜在线观看| 美女网站色精品尤物极品姐弟| 国产一级成人av| 国产综合无码一区二区色蜜蜜| 国产精品99久久久久久董美香| 国产成人va亚洲电影| 色橹橹高清视频在线播放| 日韩中文欧美在线| 亚洲第一久久影院| 成人在线中文字幕| 一级美女在线| 在线播放的av| 日本丰满少妇裸体自慰| 亚洲日本免费电影| 日韩成人黄色av| 在线观看黄网站| 色老板在线观看| 九色porny蝌蚪视频在线观看| 一区二区日本| 麻豆精品在线| 性生交大片免费看l| 尤物在线观看一区| 久久一区免费| 欧美高清一级片| 91精品视频一区二区| 99热精品久久| 成人黄色av电影| 欧美肥婆xxxx欧美另类| 亚洲av综合一区| 国产啊啊啊视频在线观看| 日本美女xxx| 亚洲国产精选| 亚洲人成网7777777国产| 免费黄色成年网站| 公侵犯人妻一区二区三区| 成人日韩在线| 福利在线午夜| 国产一区二区福利视频| 欧美在线观看视频在线| 欧美va亚洲va在线观看蝴蝶网| 亚洲男人天堂手机在线| 欧美一区二粉嫩精品国产一线天| 欧美一区二区免费视频| 日韩一级免费毛片| 欧美 日韩 国产在线观看| 欧美精彩视频一区二区三区| 蜜桃传媒在线观看免费进入| 最新国产拍偷乱拍精品| 亚洲区在线播放| 淫片在线观看| 中文字幕亚洲欧美日韩在线不卡| 麻豆专区一区二区三区四区五区| 一区二区免费看| 国产精区一区二区| 日韩精品国产欧美| 免费欧美一级视频| 男人本色网站| 欧美日韩另类丝袜其他| 日本不卡一区视频| 又粗又黑又大的吊av| 欧美成人精品h版在线观看| 欧美精品第1页| 蝌蚪视频在线播放| 亚洲天堂五月天| 天天综合狠狠精品| 美女黄毛**国产精品啪啪| 欧美一区三区二区在线观看| 欧美一卡二卡在线观看| wwwxx日本| 亚洲欧洲综合另类| 日本免费www| 亚洲欧美韩国| av日韩在线免费观看| 欧美人与禽zozo性伦| 九九三级毛片| 性欧美在线看片a免费观看| 亚洲资源在线观看| 在线免费观看毛片| 日韩精品成人免费观看视频| 日韩和欧美的一区二区| 波多野结衣乳巨码无在线观看| 4438国产精品一区二区| 日韩一级片免费在线观看| 国产这里有精品| 国产经典自拍视频在线观看| 在线免费看av不卡| 亚洲免费黄色网| 性少妇bbw张开| 国产sm精品调教视频网站| 国产精品嫩草影院av蜜臀| 在线观看日本www| 人妻少妇精品无码专区| 欧美一区二区三区免费大片| 欧美日韩综合色| 国产成人免费91av在线| 久久综合九色欧美狠狠| 亚洲国产精品第一区二区三区| 精品国产一区二区三区在线观看| 成人亚洲综合| 国产精品久久久久久网站| jizz免费观看视频| 亚洲人成无码网站久久99热国产| 91精品国产91久久久久久最新| 波多野结衣乳巨码无在线| 91日本视频在线| 青青草视频在线青草免费观看| 国产69精品99久久久久久宅男| 久久男人中文字幕资源站| 亚洲综合一二区| 国产性生活一级片| 一区二区久久久久| 国产精品电影网站| 亚洲天堂成人| 国产精品日韩欧美| 欧美 日韩 国产在线| 亚洲国产精品视频一区| 国产精品伦理一区| 日本免费福利视频| 福利一区福利二区微拍刺激| 极品美妇后花庭翘臀娇吟小说| 免费久久久久久| 成人激情小说网站| 99在线精品视频在线观看| 国产亚洲精品久久久久久移动网络| 制服丝袜激情欧洲亚洲| 日韩理论片av| 日韩精品一区二区三区外面| 亚洲精品国自产拍在线观看| 国产伦精品一区二区三区视频网站| 精品久久久久一区| 懂色av蜜臀av粉嫩av分享吧| 91精品国产91久久久久久久久| 成人午夜免费av| 3d黄动漫网站| 久久精品网站免费观看| 一道本视频在线观看| 国产日韩中文在线| 国产精品午夜久久久久久| 新欧美整片sss第一页| 日韩欧美在线精品| 日本中文字幕高清视频| 亚洲一区二区在线观| 亚洲色图欧洲色图婷婷| 中文字幕在线不卡国产视频| 美洲天堂一区二卡三卡四卡视频| 日美av在线| 精品在线视频观看| 国产尤物视频在线| 美女视频网站久久| 玖玖爱视频在线| 久久精品电影一区二区| 国产精品入口免费视| 高清不卡在线观看av| 男女啪啪无遮挡网站| 三级理论午夜在线观看| 中文字幕精品一区久久久久| 欧美一区二区三区喷汁尤物| 欧美激情国内偷拍| 91高清视频在线免费观看| 欧美 日本 亚洲| 九九精品免费视频| 香蕉精品久久| 亚洲av无码乱码在线观看性色| 欧美精品一区二区高清在线观看| 欧美在线播放一区二区| 国产精品入口福利| 成a人片在线观看www视频| 最近更新在线中文字幕一页| 国产成+人+综合+亚洲欧美| 麻豆传媒在线完整视频| 亚洲国产精品va在看黑人| 久久精品这里只有精品| 亚洲av无码国产精品久久| 久久久999国产| 久久久久久成人网| 女人天堂网站| 偷拍一区二区三区| 高清一区二区视频| 国产精品美女久久久久久久| 在线观看国产一区| 黑人と日本人の交わりビデオ| 国产一区二区三区免费不卡| 久久久久亚洲天堂| 国产精品一区二区三区美女| 国产免费一级视频| 欧美成人午夜做爰视频在线观看| 亚洲av少妇一区二区在线观看| 黄色在线播放网站| 国产麻豆视频一区| 一区二区三区四区五区视频| 97在线免费公开视频| wwwxxx黄色片| 香蕉久久夜色精品国产使用方法| 在线国产成人影院| 91成人在线观看喷潮教学| 免费大秀视频在线播放| caoporn-草棚在线视频最| 中文字幕日韩精品一区二区| 亚洲石原莉奈一区二区在线观看| ririsao中文字幕免费| xfplay每日更新av资源在线| 99re8这里有精品热视频8在线| 中国色在线日|韩| 日本一区二区在线播放| 日本乱理伦在线| 狠狠入ady亚洲精品经典电影| 综合欧美视频一区二区三区| 国产精品jizz在线观看麻豆| 成年网站在线观看| 欧美精品一区二区三区蜜臀| 亚洲午夜免费福利视频| 四虎成人免费观看在线网址| 日本免费在线观看视频| 亚洲精品自产拍在线观看| 中文字幕国产综合| 欧美人善交videosg| 欧美日本视频在线观看| wwwww在线观看免费视频| 日韩欧洲国产| 欧美精品videos| 午夜精品久久久久久久99老熟妇| 欧美三级视频在线播放| 男女污视频在线观看| 国产成人在线观看免费网站| 久久影视免费观看| 久久精品亚洲无码| 国产精品盗摄一区二区三区| 久精品国产欧美| 欧美精品三级在线观看| av电影在线播放高清免费观看| 色妞色视频一区二区三区四区| 日韩视频在线免费看| 中文字幕乱妇无码av在线| 欧美日韩日日摸| 激情五月播播久久久精品| 久久久久久久久久一区| 曰韩精品一区二区| 中文字幕avav| 国产精品入口麻豆原神| 成人国产精品一区二区网站| 日韩av无码中文字幕| 欧美日韩在线视频一区二区三区| 亚洲情综合五月天| 成人在线视频免费观看| 亚洲免费网站观看视频| eeuss影院www天堂免费| 亚洲视频在线免费看| 国产精品白丝av嫩草影院| 日韩av久操| 欧美丝袜一区二区| 亚洲成人av免费在线观看| 欧美亚男人的天堂| 好看的日韩精品视频在线| 久久久精品国产| 午夜影院在线| 欧美日韩性视频在线| 精品在线免费观看| 人禽交欧美网站免费| 69夜色精品国产69乱| 欧美午夜在线一二页| www.999av| ...av二区三区久久精品| 亚洲黄色录像片| 日韩极品在线观看| 欧美一区二区三区在线免费观看| jizzjizzjizzjizz日本| 欧美中文字幕在线观看视频| av网站一区二区三区| 欧美日韩国产成人在线观看|